
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 337

_DTI
FLECTIK

A OV2319

THESIS

NPSGDL: An Object Oriented Graphics Description

Language for Virtual World Application Support

by

Kalin Paxton Wilson

September 1992

Thesis Co-Advisors: Michael J. Zyda
David R. Pratt

Approved for public release; distribution is unlimited.

92-29920



UNCLASSIhDIL)
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

U. NAME OF gERFORMTG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

omputer cience ept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS/ZK

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

NPSGDL: An Object Oriented Graphics Description Language for Virtual World Application Support (U)

SPE RSOR!)aq AUtHOR(S)
lliSOn, la in raxton

3,O I YE RPR 13b. ITIME COVERED 1.PG ON
aaster sOesis 14. DATE OF REPORT (Year, Month, Day) 1 50

FROM 08/91 To 09/92 September 19921 150
16. SUPPLEMENTARY NOTATI1011he views expressed in this thesis are those oT the author and do not reflect the o ici
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Graphics, Data Description Language, Object Oriented Programming,

Virtual World Modeling, Graphics Class Library

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Many virtual world applications today represent the cutting edge in real-time 3D interactive graphics. Virtual

world applications must model many complex, often changing, graphical objects. These graphical objects must be

modeled both visually and behaviorly. The performance of most applications of this nature is determined by the

graphics processing capabilities of the hardware used. An efficient, application independent method for describing

and managing graphical objects is essential for rapid prototyping and development of robust virtual world

applications. This thesis presents an efficient, flexible and extensible graphics description system, NPSGDL, used in

virtual world development at the Naval Postgraduate School.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
B UNCLASSIFIED/UNLIMITED [3 SAME AS RPT. [] DTIC USERS UNCLASSIFIED

"IMa fAF,,E;PONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)j 22cF SYMBOLN~cnael .z y aa (408) 646-2305 I3L

0u ?UIM 14[4, 84 MAH W A.H edition may be used until exnaustea
All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



Approved for public release; distribution is unlimited

NPSGDL: An Object Oriented Graphics Description

Language for Virtual World Application Support

by
Kalin Paxton Wilson

Lieutenant, United States Navy
B.S., University of Utah, 1985

Submitted in partial fulfillment of the
requirements for th,, .egree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1 992

Author:

Approved By:
Mfichael J. 2QAI, Thes~is Advisor

David R Pratt, Co

Robert B. McGhee, Chairman,
Department of Computer Science

ii



ABSTRACT

Many virtual world applications today represent the cutting edge in real-time 3D

interactive graphics. Virtual world applications must model many complex, often

changing, graphical objects. These graphical objects must be modeled both visually and

behaviorly. The performance of most applications of this nature is determined by the

graphics processing capabilities of the hardware used. An efficient, application

independent method for describing and managing graphical objects is essential for rapid

prototyping and development of robust virtual world applications. This thesis presents an

efficient, flexible and extensible graphics description system, NPSGDL, used in virtual

world development at the Naval Postgraduate School.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 13
Just Ifi~at 10o

By
Distribution/
Availability Codes

Avail and/or
k~at Spca



TABLE OF CONTENTS

INTRO D UCTIO N ...................................................................................................... I

A . PREVIO US W ORK ................................................................................... I

B. NPSGDL - GENERAL OVERVIEW ........................................................ 3

C. THESIS ORGAN IZATION ...................................................................... 4

DESIGN ................................................................................................................ 6

A . G DL DESIGN ............................................................................................ 6

1. Goals and Requirem ents ................................................................... 6

2. Design M ethodology ........................................................................... 7

B . FUNCTIONAL OVERVIEW ..................................................................... 7

1. Tokens ............................................................................................... 7

2. N PSobjects .............................................................................................. 8

3. The G rand Schem e ............................................................................. 9

III. LANG UA GE D ESCRIPTION ................................................................................. I I

A . DEFTOKEN S ................................................................................................. I I

1. Defm aterial ...................................................................................... 12

2. Deflight ............................................................................................ 12

3. Deflm odel ........................................................................................ 13

4. Defcolor ............................................................................................ 13

5. Deftexture ........................................................................................ 13

6. Deftexenv .......................................................................................... 14

7. Deftexgenalg ................................................................................... 14

8. Defobject .......................................................................................... 14

9. Readobject ........................................................................................ 15

10. Defvariable ........................................................................................ 15

11. Defpcam era ...................................................................................... 16

12. Defocam era ...................................................................................... 16

iv



13. Defviewpoint ......................................................................................... 16

B. SETTOKENS ................................................................................................. 17

1. Setm aterial ........................................................................................ 17

2. Setbackm aterial ............................................................................... 17

3. Setlight ............................................................................................. 17

4. Setlm odel .......................................................................................... 18

5. Setcolor ............................................................................................ 18

6. Settexture .......................................................................................... 18

7. Settexenv .......................................................................................... 18

8. Settexgenalg ...................................................................................... 18

9. Setpcam era ........................................................................................ 18

10. Setocam era ........................................................................................ 18

11. Setviewpoint ...................................................................................... 19

C. DRAW TOKENS ........................................................................................ 19

1. Defpoly ............................................................................................. 19

2. Adefpoly ........................................................................................ 19

3. Defsurface ........................................................................................ 20

4. Deftm esh .......................................................................................... 20

5. Defqstrip ........................................................................................... 20

6. Callobject ........................................................................................ 21

7. Defcircle .......................................................................................... 21

8. Defsphere .......................................................................................... 21

9. Defcylinder ...................................................................................... 21

10. Defcone ............................................................................................ 22

11. Defline ............................................................................................. 22

12. Defdecal .......................................................................................... 22

D . XFORM TOKENS ..................................................................................... 23

1. Rotate ............................................................................................... 23

v



2. A _R otate .......................................................................................... 23

3. T ranslate ........................................................................................... 23

4. ATranslate ...................................................................................... 23

5. Scale ................................................................................................. 23

6. A _Scale ............................................................................................ 24

7. Pushmatrix ........................................................................................ 24

8. Popm atrix ........................................................................................ 24

9. Loadmatrix ........................................................................................ 24

10. M ultm atrix ........................................................................................ 24

11. Loadunit .......................................................................................... 25

E. OTHERTOKENS ..................................................................................... 25

1. N am e ................................................................................................. 25

2. O rigin ............................................................................................... 25

3. Comment and Lcomment .................................................................. 25

IV. ANIMATION AND MULTI-RESOLUTION DISPLAY ................................. 31

A. ANIMATION CONTROL ........................................................................ 31

B. MULTI-RESOLUTION DISPLAY .......................................................... 33

V. IMPLEMENTATION ........................................................................................ 35

A. RUN-TIME TYPE INFORMATION ......................................................... 36

B. REFERENCE COUNTING ................................. 37

C. THE PERSISTENCE MODEL ................................................................. 38

D. USING GDL ............................................................................................. 41

VI. PERFORMANCE CONSIDERATIONS ........................................................... 44

VII. LIMITATIONS, FUTURE WORK AND CONCLUSIONS ............................... 48

A. CONCLUSION .......................................................................................... 49

APPENDIX A: NPSGDL USER AND DEVELOPER'S GUIDE ............................... 50

APPENDIX B: DEFSOUND AND SETSOUND TOKEN IMPLMENTATIONS ....... 112

APPENDIX C: SAMPLE NPSGDL APPLICATION ................................................... 123

vi



LIST O F REFEREN CES ................................................................................................ 136

IN ITIA L D ISTRIBUTIO N LIST ................................................................................... 138

vii



LIST OF TABLES

Table 1: GDL and NPSOFF Performance Comparison ..................................... 46

Table A. I Predefined Array Classes ..................................................................... 71

Table A.2 The Common Token Interface ............................................................ 80

Table A.3 Deftoken Subclasses ........................................................................... 82

Table A.4 Settoken Subclasses .............................................................................. 82

Table A.5 Drawtoken Subclasses ......................................................................... 83

Table A.6 Xfornntoken Subclasses ....................................................................... 84

Table A.7 Othertoken Subclasses ......................................................................... 84

viii



LIST OF FIGURES

Figure 2.1 Token Class Hierarchy .......................................................................... 10

Figure 3.1 Example GDL object file ...................................................................... 27

Figure 3.2 Example GDL object file (cont.) .......................................................... 28

Figure 3.3 Example GDL object file (cont.) .......................................................... 29

Figure 3;4 Sample display of animated GDL object ............................................. 30

Figure 3.5 Sample display of animated GDL object (cont.) ................................... 30

Figure 4.1 Simple Animation Example ................................................................. 32

Figure 4.2 Animation example using a rule .......................................................... 33

Figure 5.1 GDL object file usage example ............................................................ 42

Figure 5.2 GDL token usage example ................................................................... 43

Figure A. 1 Token Formats Example ...................................................................... 53

Figure A.2 Multi-resolution Example ..................................................................... 58

Figure A.3 Sample NPSGDL application makefile ............................................... 63

Figure A.4 Simple use of NPSobjects ................................................................... 65

Figure A.5 Using the off2gdl file conversion utility ............................................... 68

Figure A.6 Template Usage Fragment ................................................................... 70

Figure A.7 Class Vertex Declaration ..................................................................... 73

Figure A.8 Vertex Class Declaration (cont.) .......................................................... 74

Figure A.9 Sample of vertex use ............................................................................ 75

Figure A. 10 Run Time Type System Use ................................................................. 86

Figure A. 11 Object Sharing Example ............................................................................ 90

Figure A. 12 GDLMM macro example ...................................................................... 96

Figure A. 13 Defsound Support Files ........................................................................... 100

Figure A. 14 Defsound Header File .............................................................................. 101

Figure A. 15 Defsound Default Constructor ................................................................. 103

Figure A. 16 Defsound Copy Constructor .................................................................... 103

Figure A. 17 Defsound Tokentable Initializer .............................................................. 104

Figure A. 18 Defsound Reader Constructor ................................................................. 105

ix



Figure A. 19 Defsound Constructor .............................................................................. 105

Figure A.20 Defsound Creator M ethod ....................................................................... 106

Figure A.21 Defsound Read_from M ethod ................................................................. 107

Figure A.22 Defsound Storeon M ethod ..................................................................... 108

Figure A.23 Defsound M iscellaneous M ethods ........................................................... 109

Figure A.24 Setsound Display M ethod ........................................................................ 110

x



ACKNOWLEDGEMENTS

The design and implementation of the Naval Postgraduate School Graphics

Description Language has been a long and rewarding process. Development began almo.-t

a year ago and benefited from many valuable suggestions and a lot of support. I would like

to thank those people who directly contributed to the development of NPSGDL.

First and foremost, I would like to thank my wife, Kim, for her patience and support

over the last two and a half years, and Parker for the welcome diversions. This work

required a lot of long days, short weekends and time away from home.

Lieutenant Alan Walters acted as a sounding ooard and tester for many of the concepts

incorporated into NPSGDL. As one of the first users of the system he helped identifiy errors

in logic and semantics.

Charles Lombardo was also an early user of both NPSGDL and the underlying class

library, NPSCL. His work in ironing out errors and identifying usage issues was invaluable.

I would also like to thank my advisors, Dr. Michael Zyda and David Pratt, for their

guidance and support for this project. Dave Pratt provided valuable insights into the

performance requirements that needed to be addressed and gave advice on how to meet

them. He also provided suggestions for features that would be useful to the applications

developed in the Graphics and Video Laboratory. Dr. Zyda provided a great deal of

enthusiasm and gave me complete control over the project. His previous work with the

NPSOFF system provided much of the groundwork for NPSGDL.

xi



I. INTRODUCTION

The graphical objects used in today's virtual world applications are usually complex.

The typical object may consist of several hundred polygons, several lighting materials and

multiple textures. Also objects may be associated together into more complex objects

which support articulated and/or animated features. The need for an application

independent way to describe, manipulate and manage any variety of graphical objects was

recognized during research on early systems in the Graphics and Video Laboratory of the

Department of Computer Science at the Naval Postgraduate School [Ref. 4][Ref. 5].

NPSGDL is the latest system developed to address this need.

NPSGDL provides two levels of application support to the developer. At the highest

level, NPSGDL is a language system that can be used to describe and manage complete

graphical objects as individual entities. At the lower level, NPSGDL is a collection of

classes representing graphics primitives. These classes can be used directly by the

developer independent of the language system. Since NPSGDL is designed and

implemented in the object oriented paradigm, each of the classes that define the language

system can be extended using inheritance to provide more specific application support.

NPSGDL is implemented in C++ for use on Silicon Graphics Inc. IRIS workstations.

This thesis describes the design, implementation and use of the NPSGDL system.

A. PREVIOUS WORK

Graphics developers and users naturally think of graphics entities as objects. Thus, the

object oriented paradigm is natural for designing and implementing graphics applications.

Wisskirchen has examined applying the object-oriented paradigm to existing graphics

standards with success [Ref. 6][Ref. 7]. His work in providing the functionality of the GKS

and PHIGS graphics systems in an object oriented framework has been used by many

researchers.



Egbert, et al has developed a system that supports graphics applications at several

levels [Ref. 81. Their system abstracts the graphics primitives and rendering process to a

level that is more portable and accessible to the applications developer. However, their

system is primarily an object hierarchy for programmer use. It does not provide for object

storage or any application independent interface.

A recent paper describes an animation and modeling system that uses object oriented

techniques and delegation to provide a flexible time-aware system [Ref. 91. Under this

system, objects are represented by a list of messages. Messages have times associated with

them and can be edited. This allows time varying behavior and flexible structures. The

system described in [Ref. 91 tries to provide an overall framework for representing

simulation and modeling involving animation.

The Silicon Graphics Inc. Inventor toolkit [Ref. 10] provides a rich assortment of

graphical objects that can be combined an many ways. Inventor is an object oriented

hierarchy of objects called nodes. Each node represents a specific graphical or relational

property. Many nodes support high level actions like dynamic representation (different

display modes) and interactive picking. Nodes are combined in tree-like structures to

compose complete objects or scenes. Scenes comprise a database that is cached and

optimized for display. The scene database can then be traversed to different degrees to

provide flexible control and behavior. To its advantage, Inventor is designed to be system

independent and provides window system and event management services. It also provides

many high level objects for modeling and interactive control. However, it is primarily

application based. It is a graphics library to be used by developers using the object oriented

paradigm. While it does provide for storage and retrieval of objects from secondary storage,

its file format is not designed to be used off-line. Rather it is designed to be used to share

objects between applications. The point being that an application is needed to generate and

modify an object.



Previous systems developed at the Naval Postgraduate School have concentrated on

graphical object storage and retrieval [Ref. 5]. These began as binary and ASCII file

formats and evolved into more complex systems. The primary goal of these systems was a

standard format for object representation that could be edited off-line and shared between

applications.

B. NPSGDL - GENERAL OVERVIEW

NPSGDL, hereafter simply called GDL, incorporates many of the concepts and

capabilities of the above systems. In particular, GDL provides graphics primitives and

higher level application support (in the form of simple animation and viewpoint control).

In contrast to some of the systems mentioned above, GDL is more tightly coupled to the

rendering software and hardware used in the Graphics and Video Laboratory. This helps

facilitate the efficiency needed in our virtual world applications. In addition, GDL

incorporates a language system that provides many advantages:

1. Off-line object definition and modification.

2. Object storage and retrieval.

3. Object sharing between applications.

4. Application independence of objects.

GDL gives application developers a high level of abstraction that supports rapid

prototyping and development of complex graphics systems. Application developers can

concentrate on how objects behave and are used rather than the rendering of the object. The

object oriented nature of the system provides for easy extension and modification. The

language system facilitates the creation and maintenance of collections of graphical objects

that can be used and shared by many researchers. The simple syntax and structure of the

language allows non-developers to describe, modify and maintain objects for application

use without needing to be experienced developers. It also serves to standardize the

representation of graphical objects across applications.

3



C. THESIS ORGANIZATION

This thesis is organized into seven chapters and three appendices. The first chapter is

the introduction. It provides the background and previous work that the thesis is based on.

Chapter 11 discusses the design of the NPS Graphics Description Language, hereafter

GDL. This chapter presents the design goals and motivations, the decisions made and the

methodology used.

Chapter III discusses two of the high level support mechanisms designed into GDL--

animation and multi-resolution display. The simple animation capabilities provided by

GDL are described and shown by example. The mechanisms and capabilities of the

animation system is presented. The multi-resolution display ability allows developers to

design objects that can have varying appearances or behaviors based on drawing primitive

resolution. The resolution model provides two method for using the object resolutions to

display an object.

The fourth chapter presents the Graphics Description Language description. The

general structure is discussed and illustrated. Each of the components of the language is

presented in detail with examples.

Chapter V cover the implementation issues associated with the GDL system. It details

support subsystems used and the motivations for them. This chapter also discusses

considerations and limitations related to C++ and the design requirements of GDL.

Chapter VI discusses GDL performance issues. Requirements and specific techniques

used to provide increased speed and efficiency are presented. Comparisons between GDL

and previous systems are shown.

The final Chapter, VII, presents the limitations of GDL. Directions and suggestions for

future work are also discussed. Finally, Chapter VII summarizes and concludes the thesis.

Three appendices are also attached. Appendix A is a user and developers guide. It goes

into greater technical detail about the design and implementation of GDL. It also gives

detailed instructions for using the system. Appendix B consists of the header and source

files for two language tokens that are added to the GDL system as an example in appendix

4



A. Appendix C contains the source code for a simple program which illustrates some of the

advanced uses of GDL.



I. DESIGN

Any robust graphics system requires a sound, extensive design. General purpose

systems, like GDL, need to be flexible, easy to understand and use, simple to maintain and

efficient. A comprehensive design process is needed to ensure broad applicability. GDL

was designed to be used in a broad spectrum of applications; from beginning graphics

programs to the most complex projects in the Graphics and Video Laboratory. The design

of GDL was shaped over an extended period drawing on numerous suggestions and

requests from potential users.

A. GDL DESIGN

1. Goals and Requirements

The design of GDL seeks to satisfy many diverse goals:

1. Backward compatibility with previous NPSOFF [Ref. 51 definition files.

2. Easy extension and addition of language elements.

3. Simple maintenance.

4. Simple, easy-to-understand user interface.

5. High efficiency with respect to graphics intensive applications.

These design goals were addressed using the object-oriented paradigm and C++.

The object oriented paradigm was the ideal choice for many reasons. Foremost is the

paradigm's support for a naturally expressive design and the close correspondence between

the design and implementation. The abstraction, encapsulation and inheritance facilities

inherent in the object oriented paradigm directly supported goals 2 and 3. The C++

language was chosen for:

1. Its compatibility with existing C libraries.

2. Its efficiency.

6



3. The degree of control and flexibility afforded the designer/implementor over

object and non-object oriented construct usage.

4. The availability of implementations on Silicon Graphics Inc. workstations.

2. Design Methodology

The design of GDL was primarily responsibility driven and atomically oriented.

Because GDL is a library of classes available to the application developer, each leaf class

is designed to be stand-alone in functionality. Function specific classes (e.g. a displayer)

were not used because in order to approach the ideal of adding a new class to the main

hierarchy without affecting any other class modules. This can't be realized in a system

where knowledge of all classes is localized.

B. FUNCTIONAL OVERVIEW

1. Tokens

The GDL language is divided into atomic units called Tokens. Each Token is

responsible for:

1. Initializing itself to a valid default state.

2. Reading itself from an ASCII stream.

3. Writing itself to an ASCII stream.

4. Defining itself if applicable (explained below).

5. Displaying itself if applicable.

Also, a Token can be copied, compared for equality and order and may provide

specific methods to access specific capabilities.

The set of Tokens is divided into five major subsets: Deftokens, Settokens,

Drawtokens, Xformtokens and Othertokens. Each of these is described in the following

sections.

The Token hierarchy, shown in Figure 2.1, provides the major functionality for

the GDL language system. Each token contributes a specific graphical, algorithmic or

managerial function. Tokens are combined to produce the desired appearance and behavior.

7



In order to support this functionality, several underlying systems had to be built.

These systems are a run-time type identification system, an object persistence system and

a simple garbage collection system. Most of these systems are provided by other language

environments. However these systems and the functionality they support are an inherent

part of the design. Language support for systems such as these is an important consideration

and can affect design decisions. These sub-systems are described in Chapter V.

2. NPSobjects

The other hierarchy in GDL is the NPSobject hierarchy. An NPSobject is the

user's normal interface to the language system. An NPSobject's basic responsibilities are

similar to a Token's:

1. Read/ initialize from an ASCII stream.

2. Write to an ASCII stream.

3. Define itself.

4. Display itself

At the high level, an NPSobject represents a graphical object used in an

application. These can be as simple as a single polygon or sphere or as complex as an

aircraft or ground vehicle. Also NPSobjects can be used to represent objects that do not

display such as an object that contains all of the lighting material definitions for an

application. At the low level, an NPSobject is a collection of tokens that represents the

properties and description of the NPSobject. In normal usage, an NPSobject is semantically

and logically associated with an ASCII file containing token definitions. This file

represents the definition of the NPSobject in the GDL. Although this is the normal usage

of the GDL system, the user is not limited to this mode. The individual Token subclasses

can be used directly and initialized at run-time. Likewise, NPSobjects can be created and

modified at run-time independent of a definition file. This provides a flexible framework

8



for both application developers using GDL and tool developers manipulating NPSobjects

and Tokens.

3. The Grand Scheme

The GDL system is designed to be highly polymorphic and uses many aspects of

the object oriented paradigm. The capabilities of the C++ language are also fully exploited.

The Token class specifies the common interface for all tokens. This allows the

NPSobject class to become a client of the Token hierarchy by only needing to know how

to use Token objects. Using the facilities of inheritance, an NPSobject can maintain and

operate on a list of tokens in a generic manner. In other words, the NPSobject can have a

list containing many different Token subclasses but can operate on each of the tokens

similarly. The idea of operating on collections of heterogenous objects in a homogenous

way is at the heart of the power of object oriented programing.

This capability allows the addition of new tokens to the Token hierarchy with no

effect on NPSobjects. This is very important. Since the typical application will only deal

with NPSobjects and NPSobjects in turn deal only with Tokens, the language designer can

add new language tokens without breaking user applications. In this case the user would

need to link to the new library. Otherwise, the GDL system ignores token identifiers it does

not recognize.

9



.n

100



III. LANGUAGE DESCRIPTION

The GDL language contains approximately 53 tokens. Each token belongs to one of

five groups: Deftokens, Settokens, Drawtokens, Xformtokens and Othertokens. Each token

is represented by a separate class with the token groups serving as super-classes and the

Token class as the root of the hierarchy as depected in Figure 2.1. The GDL language is

context-sensitive with the parsing responsibility distributed across the token hierarchy.

Each language token consists of an identifier followed by a known or limited number of

fields representing properties of the token and associated values. Token identifiers and field

identifiers are case insensitive and the order of fields is generally not important. This

provides a simple flexible syntax that is easy to remember. The user need only remember

field names and valid values, not neccesarily the order they must be listed. The identifier

for each token in the language is known to the root of the hierarchy and accessible by a class

method that reads a stream, recognizes identifiers and creates specific token instances,

which initialize themselves from the stream. When a token instance has initialized itself,

the stream is positioned at the next identifier and the process continues.

The following sections describe the specific token groups. Simple examples are given

for each of the tokens illustrating their formats. All values are floating point. Color values

are given in the range 0.0 - 1.0. For the sake of brevity, color values are denoted by "r g b"

and optionally "a" for alpha values. The term "vertex" is used to represent three component

coordinate values. Unit normals are used for all normal vectors. Comments are placed after

double slash (//) characters. Comments are not part of the token formats. It is important to

note that many of the components of a token offer reasonable defaults and are not required.

A. DEFrOKENS

Deftokens represent graphical entities that are stored for later access and use. Some

Deftokens correspond to system settings that must be defined prior to use. Others simply

11



store information to be used later. A good example of a Deftoken is a lighting material

definition which must be system defined before it can be used for rendering. Each Deftoken

subclass provides a random access table which stores copies of each instance created. These

tables are available to complimentary Settokens and the user. Thus each Deftoken

facilitates pools of instances that can be accessed as needed. Each Deftoken has a string

name that uniquely identifies it. The Deftoken class is responsible for reading and writing

this name. Individual Deftoken subclasses are responsible for any fields after the name. All

Deftoken formats begin with the token identifier and end with "defend". This allows the

property identifiers and values to be given in any order. The current Deftoken subclasses

are:

1. Defmaterial

This token represents a lighting material definition. Material definitions specify

how light interacts with a surface. These definitions are made known to the graphics system

and are available to the rendering process as needed. The Defmaterial token has the

following format:

defmaterial name

ambient r g b
diffuse r g b
emission r g b
specular r g b
shininess f //(range 0.0 - 255.0 0-no shininess)
alpha a

defend

2. Deflight

This token represents a light definition. Light definitions are used during

rendering to color and shade visible surfaces. Each light is predefimed to the graphics

system for quick access during rendering. Deflights support local and infinite light sources,

colored lights and spotlights as specified in [Ref. 12]. The deflight format is:

12



deflight name
ambient r g b
icolor r g b
position x y z w // w-0 infinite x,y,z is direction vector

II w-l local x,y,z is location
spotlight exp spreadangle
spotdirection x y z

defend

3. Deflmodel

This token represents a lighting model definition. The lighting model controls

how lights and materials are used and the calculations employed. Example properties of a

Defimodel are: ambient light color, whether the viewer is local, attenuation factors and

whether two-sided material lighting is enabled.

deflmodel name
ambient r.g b
localviewer yes Ino
attenuation K0 K1 K2 // constant, linear and squared coeff.
twoside yesino

defend

4. Defcolor

This token represents a simple rgb color used for rendering when lighting is not

desired.

defcolor name
r g b

5. Deftexture

This token represents a texture mapping definition. It associates an image file

name with the texture mapping options available from the Silicon Graphics Inc. Graphics

Library [Ref. 12]. The image file format is the Silicon Graphics Inc. format. The Deftexture

has the following format:

deftexture name

13



imagefile filename
components num
minfilter point I biliner I

mipmap_point Imipmap_linear I
mipmap_bilinear

magfilter point Ibiliner
wrap repeat Iclamp
wrap-s repeat I clamp
wrap_t repeatIclamp
tile f f f f

// wrap, wrapS & wrapt, and tile
1/ are mutually exclusive
defend

6. Deftexenv

This token represents environmental settings for texture mapping. It supports

texture decaling, modulation and blending as specified in [Ref. 12].

deftexenv name
blend I decal 1modulate
color r g b a

defend

7. Deftexgenalg

This token allows the user to specify parameters for the automatic generation of

texture coordinates for poiygons. It uses the coordinate generation capabilities available

through the Silicon Graphics GL library [Ref. 12].

deftexgenalg name
sdir linearlcontourlspheremap a b c d
tdir linearlcontourlspheremap a b c d

// a b c d specify plane eq. coefficients
defend

8. Defobject

This token allows the user to group any set of tokens into a named object that is

stored for use by any other object in the system. Defobjects are normally subobjects used

by NPSobjects or other Defobjects. An example would be the wheel of a vehicle. One

14



Defobject would represent the wheel. Any object needing the wheel could reference it using

the Callobject token discussed below.

defobject wheel
setmaterial wheelcolor
defpoly high // see description below

0.0 0.0 1.0
8
0.0 0.0 0.0

-0.1 0.1 0.0
defend

9. Readobject

This token gives the user the ability to access other GDL object files from an

object file. The name of a Readobject token is interpreted as a filename. The file is opened

and read as an NPSobject. It is assumed that the file contains Defobject definitions which

are in turn stored in the Defobject table for later use.

readobject wheel. gdl

10. Defyariable

This token represents a user defined constrained floating point variable that is

updated and maintained by GDL. As explained in the animation section above,

Defvariables can be used in place of values in certain tokens. In this way, Defvariables offer

simple animation support within GDL. The value of a Defvariable can be updated each

display loop or per unit time (seconds). It can oscillate between its minimum and maximum

value or wrap around. Also an update function (rule) can be named to correspond to a user

provided function that updates the variable value. The Defvariable still maintains the

constraints. This makes complex behaviors possible. Animated variables are discussed

further in Chapter IV. The format for the Defvariable is:

Defvariable name
min minval
max maxval
init initialval
inc increment // per sec if timed

15



timed yesino
wrap yesIno
rulename rname

defend

11. Defpcamera

This token allows the user to specify a perspective viewing frustum. The

Defpcamera can then be used in conjunction with a Defviewpoint to define the view

volume used for rendering. The field of view for a Defpcamera can be specified by a fixed

value or a Defvariable. Thus the field of view can be animated to support effects like

zooming.

Defpcamera name
nearplane nz
farplane fz
aspect aratio
fov angle IDefvariable name

defend

12. Defocamera

This token is similar to the Defpcamera. It supports orthographic projections. The

user specifies the view volume by setting the clipping planes in each dimension.

Defocamera name
xdim xmin max

ydim ymin ymax
zdim zmin zmax

defend

13. Defviewpoint

This token is used to specify the orientation of a camera. The parameters are the

location of the viewpoint, the location of the reference point and the twist angle of the view

volume. Each location can be specified using a combination of fixed values and

Defvariable names as well as a single Defobject name. The twist angle can also be specified

by a Defvariable name for continuous update. The flexible format for specifying locations

and the animation support through Defvariables make Defviewpoints interesting and easy

to use.

16



Defviewpoint name
from xiDefvariable name yiDefvariable name zIDefvariable name

IDefobject name
to xlDefvariable name ylDefvariable name zlDefvariable name

IDefobject name
twist angle IDefvariable name

defend

B. SETTOKENS

Settokens represent entities that change the graphics state. They are normally paired

with a Deftoken and provide for the use of the Deftoken's properties. Thus the Deftoken

and Settoken classes are cooperative with the Deftokens containing a pool of definitions

and the Settokens providing access to the definitions. Most Settokens have the property that

only one (of each type) is active at any time. Each Settoken has a name. The Settoken class

is responsible for reading and writing this name. Also a Settoken is usually specified as on

or off. Most Settoken formats use only a single line of text so there is no end marker as with

Deftokens. The different Settokens are described below.

1. Setmaterial

This token enables the use of a material definition. It makes the named material

current for use during rendering assuming the name corresponds to a valid Defmaterial. The

format for a Setmaterial is:

setmaterial name

2. Setbackmaterial

This token is the same as the Setmaterial token except it specifies which material

to use for the backs of polygons when two-sided lighting is enabled.

setbackmaterial name

3. Setlight

This token allows the use of lighting definitions. A light may be on or off. Up to

eight lights may be on at one time. The format for Setlight is:

setlight name num onloff

17



4. Setlmodel

This token activates a named lighting model. Setlmodels can be on or off.

setlmodel name onloff

5. Setcolor

This token sets the current drawing color to a previously named and defined color.

setcolor name

6. Settexture

This token enables texturing using a previous texture definition. A Settexture can

be turned on or off to allow texturing of portions of an object.

settexture name onluff

7. Settexenv

This token selects a texturing environment definition for use.

settexenv name onloff

8. Settexgenalg

This token selects the algorithm definition to use for automatic texture coordinate

generation. Also the user can specify whether coordinates should be generated along the s

axis or t axis or both.

settexgenalg name sdir onloff tdir onloff

9. Setpcamera

This token selects a Defpcamera definition for use. The Setpcamera can be on or

off. This enables interactive control of cameras and the switching of view volume

specifications between user code and GDL tokens.

setpcamera name onloff

10. Setocamera

This token is the same as the Setpcamera but for orthographic cameras.

setocamera name onloff

18



11. Setviewpoint

This token allows the user to select a previously defined viewpoint for rendering.

The Setviewpoint token is used in conjunction with the Setpcamera and Setocamera tokens

to define the viewing volume location and orientation.

setviewpoint name onloff

C. DRAWTOKENS

Drawtokens represent the visible graphical entities. These are the items in a scene that

all other tokens affect. Most of the Drawtokens represent low-level graphical constructs but

several offer higher level support. All Drawtokens have a resolution value. The Drawtoken

class is responsible for reading and writing the resolution. The resolution can be high,

medium or low. The Drawtoken resolutions are used to support multi-resolution objects in

applications. A description of the Drawtokens in GDL follows. Here res denotes

highImediumIlow resolution choices as discussed above. Also vertex denotes an xyz

coordinate.

1. Defpoly

This token represents a basic polygon. The polygon has a single unit normal and

can have texture coordinates optionally specified. The format for a DefPoly is:

defpoly res
nx ny nz // normal
numvertices
vertex1 [sI tl]

vertexn 13n tn]

2. A-defpoly

This token is the same as the Defpoly except that it supports the use of Defvariable

names in place of vertex coordinate values. The "A-I prefix denotes animated behavior.

The ability to specify polygon vertex coordinates that change automatically is powerful and

fun.

19



a-defpoly rea
nx ny nz
numvertices
vertexildefvariable name [Is t1 j

vertexnidefvariable name [sn tn]

3. Defsurface

This token represents a planar polygonal surface with vertex unit normals. Vertex

normals are used for Gouraud shading. Also texture coordinates can be optionally specified

for each vertex. The following tokens, Deftmesh and Defqstrip have the same

characteristics as Defsurface bu use different algorithms for rendering the surface. The

format for a Defsurface is:

defsurface res
numvertices
vertex, normal, Es, t 1j

vertexn normal, [sn tn]

4. Deftmesh

This token represents a polygonal surface using a triangular mesh. It uses the

same basic format as the Defsurface.

deftmesh res
numvertices
vertex, normal 1 1s1 t 1 ]

vertexn normal, [sn tn]

5. Defqstrip

This token represents a polygonal surface using quadrilateral strips. It uses the

same basic format as a Defsurface.

defqstrip res
numvertices
vertex1 normal 1 [a, tj]

vertexn normal, Is, tn]

20



6. Caflobject

This token allows the user to access and display Defobjects. A Callobject is used

to display subobjects that are defined and named separately. A Callobject token has two

resolutions associated with it. One for itself pertaining to which resolutions the subobject

will be shown and another to designate the display resolution for the subobject. The format

for a Callobject is:

callobject res objname display-res

7. Defcircle

This token represents a simple 2D circle defined in the x-y plane. The properties

of a Defcircle are its center location and radius.

defcircle res
center x y z
radius r

endcircle

8. Defsphere

This token allows the user to define a sphere parametrically. In addition to center

and radius, the user can specify the number of longitudinal and latitudinal divisions to use

to tessalate the sphere. The square root of the number of panels is used to determine the

tessalation divisions. The Defsphere format is:

defsphere res
center x y z
radius r
panels numpanels

endsphere

9. Defcylinder

This token allows the user to parametrically specify a cylinder for display. Its

format is similar to Defsphere with the addition of a height property.

defcylinder res
base x y z
radius r
height h
panels numpanels

endcylinder

21



10. Defcone

This token allows the user to parametrically defime a cone for display. Its format

is similar to the Defcylinder format.

defcone res
base x y z
radius r
height h
panels numpanels

endcone

11. Defline

This token allows the user to specify a multi-point line in three dimensions.

defline res
numpoints
vertex1

vertex,

12. Defdecal

This token provides the user with a facility to defIne decaled polygons. Decaling

is a technique for properly rendering co-planar polygons while using z-buffered hidden

surface elimination. With the Defdecal token, users can specify the components of the

underlay and overlay portions of a decal. The components of the underlay and overlay can

be any displayable token (Drawtoken, Settoken and Xformtoken). Drawtokens must be

planar. In normal use, only Setmaterial and Defpoly tokens are used.

defdecal res
underlay
defpolyl // see format above
defpoly2

overlay
defpolyl
de fpoly2

defend

22



D. XFORMTOKENS

Xformtokens represent entities that alter the normal representation of Drawtokens at

display time. Xfonntokens represent run-time manipulations and do not alter the definition

of other tokens. The normal transformations of rotation, translation and scaling are

represented. Also there are tokens that relate directly to capabilities of the Silicon Graphics

hardware and rendering process. Following is a brief description of each of the

Xformtokens.

1. Rotate

This token represents a single axis rotation. The rotation is normally performed in

world space with the rotation specified by a float representing whole and fractional angles.

The format for a Rotatetok is:

rotate xlylz angle

2. A Rotate

This token is the animated version of a Rotatetok. It accepts a Defvariable name

for the rotation value. This token is useful for simple animations like wheels or propellers

turning. It allows the developer to specify the animation constraints and leave the rest to the

GDL system.

a-rotate xjylz angleiname

3. Translate

This token represents a simple translation in 3-space.The format is:

translate dx dy dz

4. A Translate

This token is the animated version of the Translate token. Any of the three

translation values can be linked to a Defvariable for automatic update.

a translate dxlname dyIname dzlname

5. Scale

This token represents a 3D scale.

23



scale sX sy sz

6. A Scale

This token allows the use of Defvariables for animated scaling.

a-scale sxlname sylname sziname

7. Pushmatrix

This token gives the user access to the pushmatrix function in the SGI GL [Ref.

12] library. This function saves the state of the rendering transformation matrix. Using

Pushmatrix and Popmatrix tokens, the user can specify hierarchical transformations.

pushmat rix

8. Popmatrix

This token gives the user access to the popmatrix function in the SGI GL [Ref. 12]

library. The popmatrix function removes the current transformation matrix from the matrix

stack.

popmatrix

9. Loadmatrix

This token takes a user defined 4x4 matrix and initializes the hardware matrix

stack with it.

loadmatrix
a b c d
e f g h
i jkl
m n o p

10. Multmatrix

This token allows the user to multiply a user-defined 4x4 matrix onto the matrix

stack.

multmatrix
a b c d
e f gh
ijkl
m nop

24



11. Loadunit

This token allows the user to initialize the transformation matrix stack with unit

matrix.

loadunit

E. OTHERTOKENS

Othertokens are auxiliary tokens that do not directly affect the graphical representation

of an object. They are not related except for this fact. The current Othertokens are described

below:

1. Name

This token allows the user to name an NPSobject. When a GDL definition file is

read by an NPSobject, the object scans for Name tokens and saves the last one for user

inquiries. This is mostly for documentation use.

name objname

2. Origin

This token specifies the origin or reference point for an NPSobject. Like the Name

token, an NPSobject scans the definition file for Origin tokens. At run time, the user can

query an NPSobject for its origin. This infonnation is useful for transformations and

viewing.

origin 0 0 0

3. Comment and Lcomment

These tokens facilitate C++ style comments in GDL definition files. The

Comment token is delimited by the "/* . pair and can be multi line. The Lcomment is

a single line comment and is delimited by "//".

Overall, the GDL language is fairly simple and easy to remember and understand. Yet

it offers a great deal of flexibility and power through higher level support for graphical

abstractions. An example GDL object description file is shown in Figure 3.1, Figure 3.2 and

25



Figure 3.3. Here a simple model of a planet and moon is described. The planet and moon

are textured spheres and both rotate under GDL control, both about their axis and in orbit

in the case of the moon. The example illustrates the use of many of the language tokens and

simple animation. A picture of twoframes of the scene that this file describes is shown in

Figure 3.4 and Figure 3.5.

26



name planets
origin 0 0 0

/* This gdl file represents an earth-like planet and a single moon
The two planets are textured and are rotated using animated
variables.*/

// define the Sun
deflight sun

ambient 0 0 0
lcolor 1 1 0.75
position -1 0 0.25 0

defend

// define some materials

defmaterial sky blue
emission 0.0 070 0.0
ambient 0.105882 0.161569 0.200000
diffuse 0.529412 0.807843 1.000000
specular 0.0 0.0 0.0shinines0 0.0

alpha 1.0
defend

defmaterial aquamarinemssion 0.0 0.0 0.0
ambient 0.099608 0.200000 0.166275
diffuse 0.498039 1.000000 0.831373
specular 0.0 0.0 0.0
shininess 0.0
alpha 1.0

defend

defmaterial gray4
emission 0.0 0.0 0.0
ambient 0.007843 0.007843 0.007843
diffuse 0.039216 0.039216 0.039216
specular 0.0 0.0 0.0shininess 0.0
alpha 1.0

defend

// define the textures
deftexture earth

imagefile earthclouds.rgb
min ilter mipmapbilinear
magfilter bilinear
wrap repeat

endtexture

deftexture moon
imagefile moon.rgb
min filter mipmap bilinear
magfilter bi1inear
wrap repeat

endtexture

Figure 3.1 Example GDL object file

27



deftexenv planetenv
modulate

defend

deftexgenalg earthalg
sdir linear 0.0 0.1 0.5 20.0
tdir linear -0.10 0.0 0.1 20.0

defend

deftexgenalg moonalg
sdir linear 0.0 0.1 0.1 0.0
tdir linear -0.1 0.0 0.1 0.0

defend

// the animated variables for rotating the.planets
defvariable earthrot

min 0
max 360
init 0
inc .1
timed yes
wrap yes

defend

defvariable moonorbit
min 0
max 360
init 0
inc 0.15
timed yes
wrap yes

defend

defvariable moonrot
min 0
max 360
init 0
inc 0.2
timed yes
wrap yes

defend

// this is the displayable portion
setlight sun 2 on
settexenv planetenv on

// save the state of the application transformation matrix
pushmatrix

// incline the scene
rotate z 23.5

pushmatrix
71 spin the earth continously
a_rotate y earthrot

// color and texture the earth
setmaterial sky blue
settexgenalg earthalg sdir on tdir on
settexture earth on

Figure 3.2 Example GDL object file (cont.)

28



II draw the earth, make it low res visible
defsphere low

center 0 0 0
radius 15
panels 200

endsphere
settexture earth off

// draw the axis
setmaterial gray4
defcylinder med

center 0 -20 0
radius 0.5
panels 10
height 40

endcy1inder

popmatrix

// isolate the moons motion
pushmatrix

// continously rotate the moon about the earth
a rotate y moonorbit
tFanslate -40 0 0
// isolate the moons spin
pushmatrix

a-rotate y moonrot

// color and texture the moon
setmaterial aquamarine
settexgenalg moonalg sdir on tdir on
settexture moon on

defsphere high
center 0 0 0
radius 5
panels 100

endsphere
settexture moon off

// use a predefined material for an object on the moon
setmaterial brass
rotate z -90
defcone medium

center 0 0 0
radius 1.5
height 7
panels 10

endcone

// recover the state of the transformation matrix
popmatrix
popmatrix
popmatrix

Figure 3.3 Example GDL object file (cont.)

29



Figure 3.4 Sample display of animated GDL object

Figure 3.5 Sample display of animated GDL object (cont.)

30



IV. ANIMATION AND MULTI-RESOLUTION DISPLAY

Two of the important capabilities that GDL supports are simple animation and multi-

resolution display. These abilities allow the application designer to easily manage and

represent complex objects by letting GDL handle lower level details.

A. ANIMATION CONTROL

Animation is supported through user defined variables that are automatically updated

by the GDL system. These animated variables are similar to the animated basic types

described in [Ref. 11]. The user can place simple constraints on the variable and let the

GDL sysytem update it linearly or a user defined rule can be specified for the system to use

for variable updating.

An animated variable can be used by a variety of tokens in place of fixed values. The

animated variable token, Defvariable, acts as the server and other tokens as clients. The

client token sets up an association with the variable and informs the variable to update itself

prior to each display cycle. This scheme supports a wide range of simple, continuous

animations. For example, if a developer wanted to model a lighthouse with a rotating

beacon, the rotation could be controlled by an animated variable using constraints defined

by the developer. The beacon rotation would then be updated entirely by GDL leaving the

developer to concentrate on higher level details. A simple example illustrating this is shown

in Figure 4.1.

31



II we'll assume the existence of predefined objects that we can
// call from this object description. The tokens used here are
II described later.

Defvariable lightrotater
min 0
max 360
init 0
inc 18.0

timed yes
wrap yes

defend
1/ This defines a variable that linearly varies from 0.0 to 360.0
// at 3 rpm (18 deg / sec) wrapping from 360 to 0.

// make the object high res and

II display the lighthouse at high resolution
callobject high lighthouse high
// display the rotating beacon (note transformations are isolated)
pushmatrix
a_rotate y lightrotater
callobject high lighthousebeacon high
popmatrix

Figure 4.1 Simple Animation Example

If more complex behavior is needed by the animated variable, the developer can

specify a rule (function) for updating the variable. The name of the rule is given and the

variable associates to the rule at run time from a table initialized by the user. This rule is

then used to update the animated variable's value while the GDL system maintains the

variable constraints. An example of this is shown in Figure 4.2. An important point to

remember when using animated variables is that they are updated by their clients each

display cycle. For example if two ARotate tokens use the same Defvariable to animate the

rotation, each will tell the Defvariable to update when it is displayed. Thus the animated

32



variable will be updated twice during a single cycle. This is an simple but potentially

important consequence of using a single Defvariable in multiple animated tokens.

// In object description file: ruletester.gdl
Defvariable rulevariable

min -100
max 100
init -100
rule accel rule

defend

// defvariable would be used where needed in animated

// tokens

*** In User Program *

/1 define the rule function. It takes the last value
// and scales it.
float accel rule(float val) (return val * 1.05;)

1/ inside main() we add the rule to a table for GDL
II access

main() { // first init the ruletable with our rule

Defvariable::ruletable->add("accelrule", accelrule);

NPSobject uses rule("ruletester.gdl");

// now we have an object that uses the rule
// set up graphics environment and open a window here

uses rule.defineo; // define the object

usesrule.displayo; II This would be in the display
// loop. The Defvariable would
II call the rule function each
// time the object is displayed
// to update the value of the
// variable

Figure 4.2 Animation example using a rule

B. MULTI-RESOLUTION DISPLAY

Multi-resolution display is important to complex virtual world applications. Our

experience has been that most of our applications are graphics bound. Much of our effort

goes to reducing the number of primitives sent to the renderer. GDL supports three drawing

33



resolutions for each of its Drawtokens: high, medium and low. GDL supports both a simple

and a hierarchical resolution scheme. An NPSobject can be displayed at any of the three

resolutions under user control. Single level mode displays only the tokens having a

particular resolution. In hierarchical display mode, high resolution displays all Drawtokens,

medium resolution displays medium and low resolution Drawtokens and low resolution

displays only low resolution tokens. An object designer can designate which polygons,

subobjects etc. are visible at each resolution. The application developer can then display

NPSobjects at varying resolutions; based on distance from the viewer for instance.

This multi-resolution model supports two methods of object design. The designer can

specify three distinct representations of an object or the designer can design using one set

of surfaces but designate which are visible at various resolutions. The latter is much more

difficult but results in smaller object sizes. Using this multi-resolution scheme, substantial

performance improvements in display times are possible. The primary cost is development

time of the object models.

34



V. IMPLEMENTATION

Many issues came up during implementation related directly to the use of C++ as the

implementation language. Because of the lack of a language standard, no built-in support

for rmn-time type information, no garbage collection and the lack of standard data structure

classes, a great deal of time was spent developing these basic systems and structures before

implementing GDL.

The first effort was to construct a library of standard data structure abstract data types

and concrete data types. Initially several popular public domain libraries were considered

including the National Institutes of Health Class Library (NIHCL)[Ref. 13] and the Texas

Instruments, Inc. Library (COOL)[Ref. 14]. Although the implementation of both libraries

was very educational, neither of these libraries was used for several reasons:

1. The NIHCL single root hierarchy was deemed inappropriate.

2. Designing classes to be used by the libraries was cumbersome.

3. The time investment to become proficient using the libraries was too high.

4. Difficulty in getting a completely built version of the libraries discouraged further
use.

There were many good points to both libraries. These were incorporated into what was

to become the Naval Postgraduate School Class Library (NPSCL). NPSCL is a collection

of stand-alone classes. The classes are either concrete data types such as string, date and

time, generic abstract data types for containers (lists, tables, trees) or cooperative classes

comprising a support system. At the time that NPSCL was implemented, most C++

compilers did not support templates as defined in the proposed standard and [Ref. 15]. In

order to implement generic templated containers, NPSCL uses macro substitution. This is

not the most desirable solution but does not require special preprocessor support and is

fairly easy to use. As C++ compilers supporting the C++ template facility become

available, NPSCL wil be updated to use true templates.

35



A. RUN-TIME TYPE INFORMATION

NPSCL provides several support systems that GDL uses extensively. The first is a

simple nm-time typing system. Run-time type information (rtti) was not originally a part of

C++ due to the added overhead such a system would impose. A recent proposal [Ref. 161

to add rtti has been put forth by the language's designer which should correct a major

deficiency. Many C++ applications do not need run-time typing support relying instead on

virtual methods and dynamic binding of method calls. This falls apart in systems like GDL.

All tokens behave similarly and respond to the same messages and can thus be managed

generically as tokens. However, there are many occasions when some specific behavior not

common to all tokens is needed from a token. Also there are occasions when certain tokens

must be separated from the rest. Both of these situations demand a consistent way to

identify the type of object referenced and safely cast pointers down the inheritance

hierarchy. This is the purpose of the run-time type system of NPSCL. The type system is

non-intrusive meaning that not all classes must participate, although there is little reason

not to include all classes. The system is based on that described in [Ref. 17] and similar to

the system described in [Ref. 16]. Basically each class has a public static data member that

contains a string identifier for the class and a list of immediate base classes for the class.

Methods and macro support allow the user to query the type of a class, determine if a down-

cast is safe, compare for type equality and other helpful functions. This system is useful and

effective. It imposes little space overhead on client classes and very little performance

overhead by using inline methods where possible. Also since run-time type inquiries are

the exception rather than the norm, the system did not introduce significant performance

penalties in the tests conducted. In addition to the string name based type system described,

NPSCL provides a simple object identification capability based on integers. Using this

system, each class instance is given a unique integer identity that can be used for more

refined identity testing. These integer identifiers are used by GDL for various Silicon

Graphics, Inc. GL functions [Ref. 12] among other things.

36



B. REFERENCE COUNTING

Another system extensively used by GDL is a simple reference counting garbage

collection system. In order to save space and improve efficiency, many token objects are

shared between each other and NPSobjects. For example, consider two NPSobjects. Each

is associated with a description file that defines a "gold" Defmaterial. Only one copy of the

Defmaterial is wanted but each NPSobject that defines the same Defmaterial must contain

a copy in the event that the NPSobject must write itself to a file. In this case, the first

Defmaterial read would allocate space and insert a pointer in a table. The second NPSobject

would get a pointer to the first instance rather than a new one. To support this with a

minimum of developer worry, NPSCL provides a simple reference counting system using

smart pointer objects. This system is based on the examples in [Ref. 18] and are similar to

the "letter-envelope idiom" in [Ref. 19]. Basically every class in the GDL system contains

a reference count member and methods to increment and decrement the count. If an object's

reference count decrements to zero then its memory is returned to the memory system. The

management of the reference counts is the responsibility of a friend class that encapsulates

a pointer to the referenced class. This class is generic and uses templates to provide type

safety. The pointer class, called a Refptr in NPSCL, overloads operators to behave as a

normal pointer with the addition of adjusting reference counts as pointers are assigned,

copied and destroyed.

There are several advantages and disadvantages to using this system. Many relating to

garbage collection in general:

Advantages:

1. System is simple and easy to use.

2. Frees developer from many memory management chores.

3. System is non-intrusive. It can be used or not used as desired.

Disadvantages:

1. System imposes overhead on pointer manipulation. Little overhead is imposed for
pointer use or access.

37



2. User can break system by mixing real pointers and Refptrs.

3. System doesn't detect circular references that might result in unrecoverable
memory.

Despite these disadvantages, this system is used in GDL with few problems. In normal

use, the circular reference problem is not encountered and the overhead is only noticed at

non-critical times such as object creation/initialization. Other phases of an object's use

normally involve accessing the object pointed at and this operation has little to no overhead

due to the use of inline methods. The primary limitation to using this garbage collection

system is placed on the developer. The developer must ensure that real pointers are not

mixed with the smart pointers across scopes. This is to prevent the system from

deallocating an object still referenced by a real pointer. This is not a problem for the typical

user as all object management is taken care of within GDL. It is a consideration for

developers of tools and those managing custom collections of GDL tokens.

C. THE PERSISTENCE MODEL

A primary requirement for GDL is the ability to store and retrieve object definitions to

secondary storage. Since C++ does not provide a standard persistence mechanism, one was

designed into GDL. The persistence system was modeled after several different systems, in

particular the "virtual constructor" and exemplar methods outlined in [Ref. 19]. The

primary responsibility for storage and retrieval is distributed among the GDL token classes.

The most derived class controls most of the process. Each token implements three methods,

the read_from, storeon and creator methods as well as a special "reader" constructor called

with an input stream. Each takes as input either an input or output stream. The readfrom

method expects the stream pointer to be located immediately after the identifier of the token

and reads all fields on the stream applicable to itself until either an ending flag is

encountered, as in Deftokens, or a certain number of lines have been read, as with Defpolys.

The storeon method stores the token identifier and data values in the correct format on a

specified stream. This method has a parameter that tells the token whether it should output

38



its identifier with its data. Using this parameter, derived classes can have super classes

output their data without inserting extraneous identifiers on the stream. The creator method

is a static method. This is important because it does not work on a per object basis. The

creator method's function is to allocate a new instance of a token and initialize it from an

input stream. The creator then returns a pointer to the new token to the caller. The creator

method acts as the virtual constructor as explained below.

Using these methods, each token provides facilities to read, write and initialize itself

from file streams. Still there must be some object or process in overall control of all this.

All of the token identifiers currently valid in the system must be known in order to

recognize them on an input stream. Also, once an identifier is recognized, there must be a

way of telling the correct token to initialize itself from the stream. This responsibility is

delegated to the Token base class. The Token class contains a static table of Tokeninfo

objects called the tokentable. A Tokeninfo object associates a token's typename and the

address of its creator method. The Token class provides a public static method called

read tokenO that will process an input stream using the following general algorithm:

1. Read a string, assume it's a token identifier.

2. Lookup the identifier in the tokentable.

3. If the identifier is valid then get the tokeninfo object for that token, else issue an
error and return.

4. Call the identified tokens creator method passing the input stream in.

5. The creator will return a pointer to a valid token initialized from the stream. Return
the token pointer to the caller.

The readtoken method is called repeatedly by the NPSobject::readfrom method

until the end of file is reached.

An important consideration in the design of GDL was the initialization of the

tokentable. One of the primary design goals was to be able to add new tokens to the

language system with minimum effect on other modules. The ideal being providing a

header (.h) and implementation (.C) file for the new token(s) and adding the object module

39



to the library archive. This ideal is very close to being met. The tokentable is initialized

dynamically using a special constructor in each token and a special instantiation of each

token.

The special constructor is one that takes as its sole argument a Tokeninfo object. As

discussed above, the Tokeninfo object is the object placed into the tokentable. The base

class Token's special constructor places the Tokeninfo object into the table. All derived

tokens simple call their base class's special constructor passing the Tokeninfo object along

to the root of the hierarchy.

In order for this system to work, this constructor must be used. Thus in each tokens

implementation file, a single static object of the particular token type is instantiated using

the special constructor. The C++ language guarantees that global static objects will be

constructed before main() is entered. So all of the static objects used for tokentable

initialization are constructed prior to main() ensuring that the tokentable is properly

initialized automatically at run-time. There is no need for user initialization.

This system for dynamic initialization works well. There is one problem though.

Current linker technology does not support this model well. Typical GDL users use only

the NPSobject class and don't directly refer to the token subclasses. Since the NPSobject

classes deals with tokens in the abstract through Token pointers, it does not refer to derived

tokens directly either. Thus there are normally no references to derived token modules for

the linker to resolve. The result is that the linker does not include the modules for derived

classes and the tokentable is not initialized properly.

The temporary remedy was to fall back to the more traditional method of having an

object or module that ensures that each module is linked in. Instead of having an external

class manage the tokentable initialization, there is an external object, called a

Token-Registrar, whose constructor calls a static method named registertoken0 provided

by each token class. This method does nothing. It is used solely to generate an unresolved

reference for the linker. The Token-Registrar is instantiated in the Token module which is

40



always linked in. The advantage to this approach is that the registration functionality is

easily removed without affecting anything.

The long tern remedy is more intelligent linker technology. Dynamic linking to the

degree needed is not supported on the platforms we use. Shared libraries don't address the

problem either and are very difficult to construct for a system such as GDL. As object

oriented programming and C++ become more popular, linker technology must improve to

support the highly dynamic designs possible like this initialization scheme.

There is another consequence to using the registration method. NPSobjects only know

about the class Token. The actual derived tokens used are instantiated at run-time and

accessed via dynamically bound calls. Thus there is no way to know which tokens will be

needed by any set of definition files. Therefore all token modules must be linked to the

application. This results in large applications with possibly a lot of unused code. The

alternative is to preprocess definition files and only link the modules needed. However, this

is limiting and establishes an application dependence. The definition files can not be

modified without preprocessing again. This option is discussed in APPENDIX A:

NPSGDL USER AND DEVELOPER'S GUIDE.

D. USING GDL

The normal usage of GDL is straightforward and simple. The NPSobject class is the

normal interface to the system. The user simply instantiates an NPSobject with a definition

file name, defines the NPSobject to ensure that any Deftokens are defined to the graphics

system and displays the object when desired. This technique is illustrated in Figure 5.1

41



// program display planets.C
#include "NPSobjecE.H"
#include "gl. h"
void init (){

// open and config a gi window
winopen ("planets"
RGBmode (;
doublebuffer o;
gconfig 0;

main()
float backcolor[41 - (0.0, 0.0, 0.0,
0.0);
NPSobject p_obj("planets.gdl"); // read the file

init 0;
p_obj.define); // define any Deftokens

while(l) ( // kill from win manager
c4f (backcolor);
clear (; // clear the window
// put up viewing and transformation stuff

p_obj.display ();
swapbuffers();

Figure 5.1 GDL object file usage example

In addition to this object defimition-fide based approach, the user can instantiate and

use individual tokens. This way the GDL tokens can be used as individual abstractions of

the underlying graphics library. A simple example of this is shown in Figure 5.2. The key

point is that normal use of GDL is simple since management of low level details is hidden

from the user. As mentioned before, GDL provides a standard method of describing

graphical objects. Since a large number of objects exist in our laboratory, few developers

need to worry about the details of creating description files. Many simply use what is

available thereby speeding the prototyping and development process.

42



II program use materials.C
finclude "NPSo~ject.H"
#include "Setmaterial. H"

void init()

I/ open and config a gl window
winopen("planets");
RGBmode();
doublebuffero;
gconfig(;

main()
float backcolor[4] - (0.0, 0.0, 0.0,
0.0);

// read the file containing material
definitions
NPSob ect m obj("allmaterials.off");
init(; -
m_obj.define(; // define all materials

while(l) ( // kill from win manager
c4f(backcolor);
clear(; // clear the window
// put up viewing and transformation stuff

Setmaterial cur mat("gold");
// draw something that is gold
swapbuffers 0;I

Figure 5.2 GDL token usage example

43



VI. PERFORMANCE CONSIDERATIONS

GDL is used in complex, interactive, real-time 3D graphics applications. Performance

is a critical issue. Limited analysis has shown that GDL is very efficient when compared to

previous systems with similar purposes [Ref. 5]. GDL does impose a small amount of

overhead in managing objects manually using traditional methods. This is primarily due to

the trade-offs between designing for application use and general tool use. Many of the data

structure classes used support high level operations that will be helpful to GDL tool

designers. While this does not imply that the data structures are inefficient, it does increase

the code size. A good example is the use of a string class that manages memory and

supports substrings and concatenation compared to normal C character arrays. But as the

objects become complex, the overhead of GDL factors out. Also the flexibility and utility

of the system compensates for any minor performance degradations.

GDL performance is based on two main strategies. First, all calculations are

preprocessed prior to display. Second, routines that are called often or are demonstrated

bottlenecks are optimized based on profiler feedback.

The first strategy has the most impact. Where possible, each token performs any

calculations needed either during initialization or definition. Also graphics data is cached

for fast retrieval rather than calculated during display. This is the classic trade of space for

speed. For example, during initialization, the Defsphere token calculates the vertices for a

tessellated sphere and stores the results in an array for easy access. This technique is not

new but important and applicable.

Another performance boost is gained in the NPSobject class. Each NPSobject contains

five lists of Tokens. The main list contains all tokens and is the basis for the other lists. The

main list is used for reading and writing. The second list contains only Deftokens, while the

other lists are used for display and contain tokens of the same resolution. This approach

reduces the number of function calls required at different phases of object use. Remember

44



that each token responds to a common set of messages. If the token does not directly handle

a message, for instance a Deftoken does not implement a display() method, then the default

method is invoked in a base class, typically Token. This default method is usually empty

but still imposes a function call. These unneccesary calls are prevented by using specific

lists at the expense of space and preprocessing time. Also the separate lists, coupled with

the multi-resolution display model, reduces the number of primitives sent to the underlying

graphics system.

The second strategy involves the normal performance tuning cycle. Profilers were

used to identify those functions that were called the most and those that used the highest

percentage of CPU time. These were then analyzed for optimization.

The primary method during the first optimization phase was the use of inline

functions. This came into play in two ways. The first way is the normal use of the C++

inline construct. During design, only the most simple methods were designated as inline,

reserving it's use for tuning. This was to prevent code size growing to the point of

generating excess page faults in the virtual memory system. This proved prudent as

additional inlining was not needed very much. Functions that were called fairly often that

were candidates for imininig were made hiline. The page fault rate was monitored for excess

increases as a result of the inlining.

The second inlining method used was to reduce or eliminate member function calls

from within a class. While the function calls make the code easier to read and more

compact, they result in one or more function calls in order to accomplish something with

data already accessible to the first member function. So, where feasible, each member

function manipulates class data explicitly rather than through other member functions. This

is also true in the case where the other member function is inline. Since the inline directive

can be ignored by the compiler, the inline expansion was used directly when needed.

After analyzing critical functions, some general and machine specific optimizations

were made. [Ref. 20] was used as a guideline for optimal use of the graphics architecture.

One of the first optimizations was to unroll loops during display. For example, a Defpoly

45



contains a list of n vertices. If n is small, less than seven, the traversal loop is unrolled

yielding better performance. Also pointer arithmetic is used over subscripting when it is

safe and convenient to do so.

One of the machine specific techniques used is to use four element float arrays for

vertices rather than three elements. This is due to the read length of the cache system in

Silicon Graphics 4D series workstations.

GDL drawing performance was compared to that of NPSOFF [Ref. 5], a system with

similar behavior implemented in C. The comparison consisted of displaying the same

object 10000 times and reporting the average user and system time to display a single

frame. The object displayed was a Gouraud shaded, lit cube, with two textured sides, a

small line and a simple decal of a triangle on a square.The texturing was done with both

explicit coordinates and automatically generated texture coordinates. The object was

rendered on a Silicon Graphics, Inc. Iris 4D/340 VGX using a perspective projection and

z-buffered hidden surface removal. The results of five runs of each timing program are

shown below with user time and system time in microseconds:

Table 1: GDL and NPSOFF Performance Comparison

SYSTEM Run I Run 2 Run 3 Run 4 Run 5 Avg.

NPSOFF User Tune 1438 1491 1501 1645 1629 1541

System Time 900 828 923 870 919 888

GDL User Tune 1466 1371 1432 1470 1572 1462

System Time 874 932 924 1033 894 931

Total Time NPSOFF 2429 GDL 2393 1.4% Diff.

These results are encouraging. While the two systems share common capabilities,

GDL provides many additions and improvements over NPSOFF. In addition to the benefits

gained from the object-oriented design and implementation, GDL provides extensive error

46



detection and recovery, reasonable default behavior, extended data structure support, name

space control and more high level application support.

47



VII. LIMITATIONS, FUTURE WORK AND CONCLUSIONS

GDL is the most recent effort to provide application developers with an easy to use,

application independent method to describe, store, share and manipulate graphical objects.

GDL does this well. However there are limitations to the system. The components and

focus of GDL are still relatively low-level and platform specific. Many of the GDL tokens

correspond closely to Silicon Graphics GL functions [Ref. 12]. This still requires the

developer to understand the use and interactions of many GL functions. A higher level of

abstraction, including more high level components, would be helpful in many cases. The

abilities of the system described in [Ref. 10] coupled with the advantages associated with

the language format of GDL would be ideal.

Another limitation is the size of the GDL library. As mentioned before, the typical

linker must be forced to link the modules of the derived token classes. Since it is not known

prior to execution which tokens will be needed, all derived tokens and their support

modules must be linked to an application. This results in almost the entire library being

linked to an application even though many tokens may not be used. This is more of a linker

problem than an GDL problem but is still a consideration for developers, as the size of the

resulting executable and the placement of token modules may affect the page fault and

cache performance of the application.

Future work on GDL will try to address these issues. The primary focus of future work

will be to add extended functionality. An important aspect of many objects within NPS

applications is physical characteristics like mass, center of gravity, etc. Extensions to GDL

that embody object characteristics for supporting physically based modeling might be very

helpful in providing higher level modeling capabilities. Other high level graphics support

for advanced features of the graphics system, like atmospheric effects, motion blur, and

anti-aliasing, are also likely candidates for support by GDL.

48



A. CONCLUSION

GDL provides high level application support. It incorporates an application

independent language for describing graphical objects as weU as a medium to high level

graphics interface system. It is simple to use, easy to extend and maintain, and very flexible

and capable. GDL gives application designers the leverage needed to rapidly prototype and

develop applications. The ability to create and maintain collections of object models as well

as individual components that can be used in many different systems is critical to virtual

world development at NPS.

49



APPENDIX A: NPSGDL USER AND DEVELOPER'S GUIDE

Introduction

The NPS Graphics Description Language allows the description, management and

manipulation of graphical objects in an application independent format. The system can be

utilized on a variety of levels satisfying the needs of most users. At the highest level, the

NPSGDL system facilitates the use of ASCII files containing textual descriptions of

graphical objects. The user can use these files as program objects in a simple and abstract

way. Low level usage of NPSGDL allows access to individual classes of objects that

represent different graphics entities, concepts and algorithms. At this level, NPSGDL

provides a simple, higher-level interface to the Silicon Graphics Inc. (SGI) Graphics

Library.

Assumptions

This manual makes the following assumptions and considerations about NPSGDL

users, namely: a user is a programmer/designer familiar with graphics programming on the

SGI IRIS/4D series graphics workstations, the user is familiar with the SGI graphics library

(GL), the user is expected to be familiar with the C++ language and the concepts of classes,

inheritance, polymorphism and encapsulation as implemented in C++. NPSGDL is

implemented using the object oriented approach to design and programming and for this

reason is implemented in C++. There is currently no C language interface to NPSGDL. In

addition to assumptions indicated above for users of the system, a developer is assumed to

be a designer/programmer tasked with maintaining and/or extending the NPSGDL system.

Furthermore, a developer should be thoroughly familiar with all the concepts related to the

user.

50



User and Developer's Guide Organization

This guide consists of four major sections. Each major section has several subsections.

Where applicable, the subsections subject matter and content will begin at a level for the

general user and progress to more technical details for the developer.

The first section is a system overview. It describes the structure, capabilities and

normal usage of the NPSGDL system. The second section describes what a user must do in

order to use NPSGDL in his/her applications. It discusses linking to the libraries, file

dependencies and file format compatibility. The third section discusses the NPSGDL

Support Classes. NPSGDL uses several special classes to provide advanced capabilities.

Many of these classes can be used by users in their applications without directly using

NPSGDL. This section discusses those classes. The final section is the NPSGDL Class and

Language Description. This section details each of the classes that make up the NPSGDL

system. Each class's data members, methods and normal behavior is discussed with

examples of usage from description files and directly within user program code.

Author and Point of Contact

The NPSGDL system was designed and implemented by Lt. Kalin Wilson in 1991-

1992 as part of a Master's Thesis.

Suggestions for improvement, questions and bug reports are welcome. Please direct

them to the permanent point of contact below:

Dr. Michael J. Zyda
Naval Postgraduate School
Department of Computer Science
Code CS/ZK
Monterey, Ca 93943
zyda@cs.nps.navy.mil

51



NPSGDL SYSTEM OVERVIEW

Purpose

The purpose of the NPS Graphics Description Language is to provide an application

independent method of storing, retrieving and managing graphical objects and components.

NPSGDL objects are normally described in ASCII files in a simple, easy to read syntax.

Any ASCII text editor can be used to create or modify an NPSGDL object. The application

independent nature of the NPSGDL system offers great flexibility to the application

developer. Graphical objects displayed and manipulated by application code can be

modified without the need for recompilation. A key advantage of NPSGDL is the ability to

create collections of ready-made objects that any application can use. This facilitates rapid

prototyping and sharing of objects across applications.

General Structure

NPSGDL is primarily a description language system. As such, the normal use of the

system is through ASCII description files. NPSGDL is organized as language tokens. Each

token in the language represents a separate graphical entity or algorithm. An example

would be the Defmaterial token which describes lighting material characteristics or

Defpoly which describes a filled polygon. Each token falls into one of fi . general token

categories:

1. Deftokens: These are tokens that define system variables or settings that can
be used by other tokens as needed.

2. Sottokens: These are tokens that establish the current graphics context. They
are normally paired with Deftokens. An example is Setmaterlal which
enables the use of a previous Deflmaterial definition for rendering.

3. Drawtokens: These tokens represent visible entities that are rendered to
produce the object shell displayed for the user.

4. Xformtokens: These tokens represent graphics transformations used to alter
the display of an object at run time. An example is Translate which applies a

52



normal xyz translation to an object.

5. Othertokens: Tokens in this category do not affect the graphics process.
They are provided for documentation and convenience. Examples are the
Comment tokens and the Name token used to name an object.

Each token has it's own syntax or format that it recognizes in a description file. A

token's format can consist of zero or more fields which represent token component values.

Some formats are open ended relying on a number to specify the number of components in

the format. Other token formats are closed and have a field that marks the end of the format.

This is illustrated in Figure A. I . Token formats are string and line oriented. Each token

parses itself. Normally a token will parse by reading a complete string, up to whitespace,

and then trying to recognize the string. The parse process is line oriented in that some

tokens expect to find values or strings on the same line as other strings or fields. In Figure

A. 1 it would be a parse error if the string "shinyblue" appeared on the next line. The

Defmaterial token expects to find it's name on the same line as it's identifier. In general

the format of a line in a token format should be adhered to. The ordering of the lines of a

closed fonnat is not significant. In the Defmaterial definition in Figure A.1, the lines for

the ambient, diffuse or shinyness fields could be in any order.

// the defmaterial format is ;lo.ed as are most deftokens
defmaterial shinyblue
ambient 0.3 0.45 0.95
diffuse 0.1 0.3 0.75
shinyness 30.0
defend

// the defpoly format is open. It relies on user information
defpol yhigh
0 0.7675 0.7675
3
000
0 10 0
0 0 10

Figure A. I Token Formats Example

In most cases NPSGDL is case insensitive. The exception is names given to or referred

by tokens. The Defmaterial name "shinyblue" shown in Figure A.1 would need to be

matched exactly by any Setmaterial trying to use that definition.

53



Format errors are reported as NPSGDL warnings on cerr, the standard error output

stream. Errors in formatting usually result in warnings that say that some token name is not

recognized. Errors in name mismatches will result in a warning that reports that the given

name was not found in some table. In general, the warning issued by NPSGDL will be

informative enough to trace the source. Also when an error occurs, a reasonable default is

used if possible to allow execution to continue otherwise your program is aborted.

As much as possible orthogonality and reasonable defaults are used to make the

language easy to use. This means that tokens with similar formats use similar names and

values. Also, not all fields need to be specified. If the default value is adequate you do not

need to specify it in the description file. See the individual token descriptions for details.

Each token is represented by a C++ class. Most of the classes are relatively self-

contained. This makes it possible to use NPSGDL has an alternate interface to the GL

library adding some object-oriented properties and higher level capabilities. Application

developers can use the token classes directly within application code either with or without

object description files.

Capabilities

NPSGDL can be a very powerful tool. It offers a wide range of tokens with differing

functions. These can be combined in almost any fashion to achieve different graphics

effects. In most cases NPSGDL objects are used for simple display of a single graphical

object such as a house or car. NPSGDL provides many tokens that encapsulate GL

functionality. So many of the things that you normally do with the GL you can do in an

NPSGDL description file.

NPSGDL has many advanced capabilities as well. These are discussed below and

include: high level objects, high level algorithms, subobject management, multi-resolution

display, simple animation facilities and simple viewpoint control.

54



High Level Objects

Having simple to use, ready made, high level objects makes application object

development much easier. NPSGDL provides parametrized circles, spheres, cylinders,

cones and cubes. Using these objects you can create many complex, visually pleasing

objects in little time.

High Level Algorithms

There are many graphics algorithms that are difficult to remember or implement.

NPSGDL currently supports one of these, polygon decaling [Ref. 21]. Polygon decaling is

a process to display two or more coplanar polygons using z-buffered hidden surface

removal. Normally if you have coplanar polygons in the presence of z-buffering the

polygons will appear to shimmer or tear on top of each other as the z-buffer tries to resolve

which is on top of which. Decaling is an algorithm to overcome this problem. NPSGDL

provides the Defdecal token which allows you to specify two lists of tokens, the underlay

list and the overlay list. When displayed, the Defdecal takes the steps neccesary to decal

the overlay list onto the underlay list. This is very helpful for things like roads, opaque

windows and the like.

Subobject Management

Few interesting graphical objects are simple enough to not have or need subobjects or

components. NPSGDL provides the Defobject token to help manage and facilitate the use

of subobjects. A Defobject is named and contains a list of any tokens, normally these are

displayable. This Defobject is then stored in a table accessible by Defobject name. Any

other NPSGDL object can call or display a previously defined Defobject by name. The

subobject can be transformed in the calling object as needed without affecting the subobject

description. This method of subobject management makes it easy to build collections of

commonly used object components and then combine them as necessary. A good example

of this is a jeep or other vehicle. Each of the tires is identical except for location. We can

55



store the definition of the tire in a Defobject. The jeep object would then call the tire

subobject iour times translating the tire to the proper location for display each time.

NPSGDL does not provide any autonmatic facilities to manage object-subobject relationsuhips. Any

relationships, graphically or behaviorally are handled by die user either in the description file or in the

application code.

Multi-Resolution Display

Many complex graphics applications are graphics bound in performance. In these

cases a goal of the developer is reducing the number of polygons displayed during each

frame while maintaining visual quality. NPSGDL helps support this goal by providing two

multi-resolution display schemes for graphical objects. This is typically done by providing

a means to selectively display different parts or versions of an object during run-time. An

example would be to display low detail views of an object when it is far from a viewer and

increase the level of detail as it gets nearer.

Each NPSGDL Drawtoken is given one of three resolutions: High, Medium and

Low, as assigned by the user. The default resolution is High. Within a NPSGDL object,

Drawtokens are sorted by resolution for efficient display. How the resolutions are used to

display an object depends on the mode of the display. Currently, NPSGDL supports two

modes, hierarchical or single. The default display mode is single.

The single resolution display mode displays only the tokens with a resolution

matching the resolution provided to the display method of an object. This mode is the

simplest to use and provides for fast efficient display. Also this mode provides for the

specification of three distinct display models within one object description file. The prime

disadvantage is the possible duplication of token definitions between the different

resolution models within an object.

The hierarchical display mode displays all tokens with a resolution equal or lower than

the resolution provided to the display method of an object. For example, displaying an

object in high resolution displays all tokens while displaying an object in medium

resolution displays only medium and low resolution tokens. This display mode allows the

56



user to specify which parts of an object will be visible at the different resolutions. It also

helps reduce the number of -olygon duplications within an object. The prime disadvantages

to this mode are complexity and efficiency. Designing an object that is displayed

hierarchically and looks good at the various resolutions is not easy. Just providing a shell

and then specifying detail features as high resolution tokens usually results in small,

noticeable holes in the shell. However, if the time is taken to design a hierarchical model,

it will normally be smaller than a corresponding single resolution model (with three

versions). This translates to disk space and run-time memory savings. The efficiency issues

with hierarchical display are small but possibly important. As was pointed out above, the

Drawtokens are sorted by resolution. To preserve the behavior and appearance of the

object after the sort, Settokens and Xformtokens are duplicated within the display lists.

This could result in duplicate calls for material bindings etc. during display. For example

given the following object description fragment in Figure A.2 , the system binding to

activate the blue Setmaterial would occur three times, once for each resolution. Normally

this is trivial but is important to understand.

57



Setmaterial blue
// assume material definitions exist
defpoly high
100
3
O000
010
001

de fpoly medium
010
3
111
121
122

defpoly low
010
3
233
111
O000

Figure A.2 Multi-resolution Example

Animation

One of the most powerful facilities provided by NPSGDL is management and control

of simple animation for NPSGDL objects. The NPSGDL animation system is simple to use

and very flexible. It allows the user to define named animation variables that can be used

as values in various NPSGDL tokens. These animation variables, called Defvanables in

NPSGDL, can be updated either completely by NPSGDL or by the user and NPSGDL.

Once a Defvarlable is defined it can be used by many tokens, notably the Xformtokens

and some Drawtokens. Using animation variables, the user can turn the control of

animating such things as tuming wheels, rotating antennae, spinning propellers and a

myriad other objects that only require simple continuous animation over to the NPSGDL

system. For discontinuous or more complex animation, NPSGDL provides hooks to allow

the user control over updating the animation variables. Previously the user would have had

58



to manage the separate components of an object that needed to be animated within

application code.

Viewpoint Control

NPSGDL provides facilities for specifying and using viewing volumes. Two

categories of tokens work together to provide this: cameras and viewpoints.

Two types of cameras are provided by NPSGDL, orthographic projection and

perspective projection. Camera tokens specify the dimensions of a view volume. Cameras

are named and stored in a table for random access. This simplifies the management and use

of multiple view volumes. Cameras can be turned on and off by name.

Viewpoints specify the location and orientation of a view volume. Like cameras, they

are named and stored in a table for random use. Viewpoints are very flexible. The from and

to values can be specified either absolutely, using animated variables, or by object name

(the object origin is used).

Many users can not need the viewpoint control facilities. Many simple graphics

applications use one viewing volume that is fixed. By specifying the view volume with a

camera and viewpoint in a description file, the user gains the ability to change the volume

dimensions and orientation without recompilation. The combination of viewpoint control

and simple animation makes it possible to define simple animation sequences completely

within an NPSGDL description file. Widle this can not be normally applicable, the system

is very flexible and many possibilities exist.

All of the facilities above will be discussed in more detail with examples in the token

descriptions that follow.

59



USING THE NPSGDL SYSTEM

NPSGDL gives the application developer many powerful and helpful tools to speed

prototyping and development. This section discusses the essentials of actual use of

NPSGDL. Topics include:

Compiling, linking and debugging NPSGDL applications.

Essentials of object use.

Considerations for NPSGDL object use.

NPS Object File Format (OFF) compatibility.

Compiling, Linking and Debugging NPSGDL Applications

Using the NPSGDL system is quite straightforward and easy. There are a large number

of object description files, in both GDL and OFF format, available for general use. Using

these ready made objects, users do not need to learn the details of the language system

itself. This section will present the steps needed to produce a working NPSGDL

application. The examples shown assume that the object description files already exist and

are not shown.

NPSGDL is written in C++ using C++'s object oriented capabilities. No C language

functions are provided at this time. Therefore NPSGDL applications must be compiled and

linked using the C++ language system. As of this writing, NPSGDL was compiled under

Irix 4.0.x using the Silicon Graphics Inc. port of AT&T cfront 2.1.

The primary concerns for easy use of the NPSGDL components are the locations of

the header and library files. These locations should be specified to the compiler via the -I

and -L switches. The main paths for NPSGDL files are:

/n/gravyl/work/zyda/NPSGDL for the header and source files.

and

60



/n/gravy1/work/zyda/NPSGDL/Iib for the object module libraries.

NPSGDL relies heavily on header files and modules in the NPSCL C++ library.

NPSCL is a general purpose collection of standard data structure classes, templates and

systems. It is available for general use and is documented separately. See the point of

contact listed above for details. The locations for the NPSCL headers and libraries are:

/n/gravyl/work/zyda/NPSCL for the header and source files.

and

/n/gravyl/work/zyda/NPSCL/lib for the libraries

There are three library versions available for NPSGDL. One, IibNPSGDL.a, has been

optimized using the -02 compiler switch. The other, IibDNPSGDL.a, was compiled with

the -g compiler switch to include debugging information in the object code. While

debugging your NPSGDL application, it can be useful to link to the debugging library to

trace any errors that can occur within NPSGDL. A third library, libDTNPSCL.a, available

for developers, contains support for a debugging trace log using the NPSCL debugging

classes in "debug. H". Programs linking to this library must initialize the debugging system

with the FTRACER macro as described in the NPSCL manual. Failure to do so will cause

a program abort and core dump.

NPSGDL uses several other libraries. The NPSCL C++ class library (see separate

documentation) rrovides many of the basic data structures used by NPSGDL. NPSCL also

provides the run-time typing and reference counting support systems discussed later. The

NPS image support library is used to provide image manipulation capabilities for texture

support. The image support library in turn requires the SGI image library. The standard gl

shared library is used as is the standard math library. These libraries are listed roughly in

the order they should be included when linking. The normal UNIX linker does a single pass

through libraries to resolve references. Thus the NPSCL library should be listed after the

NPSGDL library because the NPSGDL library will generate references to the NPSCL

library objects.

61



The easiest way to manage a NPSGDL project is using the UNIX make utility. If you

are not familiar with make, refer to the online manual pages or any good UNIX book. A

simple make file is given below that illustrates how to use the compiler directives to locate

header and library files. Simple coimments are included in the make file. See the manual

pages on make for detailed information. One thing worth mentioning is the makedepend

utility. Usually one of the hardest and most often neglected things to do when using make

files is properly specifying inter-file dependencies. The makedepend utility automates this

task by processing project source files as the compiler will and building dependency lists

that it appends to your make file. Then using make implicit rules, you can almost fully

automate the compilation and linking process. For more information on makedepend consult

the manual pages.

62



# This is a sample makefile used to compile
# and link an example NPSGDL application

# These are macro definitions that can be used
# by other statements in the file

# define the standard places to look for include (header) files
INCLUDE- -I/usr/include/CC -I/n/gravyl/work/zyda/NPSCL/lib \
-I/n/gravyl/work/zyda/NPSGDL

#define the standard places to look for libraries
LIBDIRS - -L/n/gravyl/work/zyda/NPSCL/lib \
-L/n/gravyl/work/zyda/NPSGDL/lib \
-L/n/gravyl/work/zyda/imagesupport

# This is used for show dependency on the library
DEPNPSGDL - /n/gravyl/work/zyda/NPSGDL/lib/libNPSGDL.a

* This application will be optimized
# -DNDEBUG is used by NPSGDL to turn off assertion checking
# you can or can not need it for your application
# -DSGI_ is convenient if you need conditional code for SGI

DBGFLAGS- -02 -DNDEBUG -D SGI

# Some more descriptive names for the libraries
NPSCL LIB- -INPSCL
GL LI - -igl s -lm
NP3GDL LIB- -TNPSGDL
IMAGErIB - -lnpsimage -limage

SRC - testoff.C

# tell make about the '.C" suffix
.SUFFIXES: .C .o

# This is an implicit rule that defines how to compile a .C file
.C.o:; CC -c $(DBGFLAGS) $(INCLUDE) $*.C
ALL - testoff
all: $(ALL)

touchall:
-touch *.H
touch *.C

clean:
-rm -f *.o

# generate the dependency listing
depend:
makedepend -f makefile -- $(DBGFLAGS) $(INCLUDE) -- $(SRC)

# The normal dependency and compile command
testoff: testoff . $(DEPNPSGDL)

CC -o testoff testoff.o $(DBGFLAGS) $(INCLUDE)\
$(LIBDIRS) $(NPSGDLLIB) $(GLLIB) $(IMAGELIB) $(NPSCLLIB)

# The dependencies will be listed below by makedepend
# DO NOT DELETE THIS LINE -- make depend depends on it.

Figure A.3 Sample NPSGDL application makefile

63



Essentials of object use.

The NPSGDL system is dynamically initialized at run-time prior to the main()

function being called. This means that in most cases there is no user initialization of the

system needed before using NPSGDL objects. Another important point is that NPSGDL is

very robust. It uses reasonable defaults for both language token values and for object

method parameters. The extensive error checking and recovery built into NPSGDL

generally allows your application to work with faulty NPSGDL object files, easing the

development process.

NPSGDL objects are represented by the NPSobject class. NPSobjects are

essentially a list of Tokens that are initialized at run-time either from an object description

file or manually by the user. The normal usage is to initialize an NPSobject from a file. This

is the approach shown here. Manually defining an NPSobject is discussed in the class

details section below.

There are a minimum of three steps that must be taken to display an NPSobject:

construction/initialization, definition and display. NPSobjects are constructed in three

different ways. An empty NPSobject can be constructed using the default constructor and

the syntax shown in Figure A.4.

64



#include "NPSobject. Hw

#include <gl.h>

maino f

winopen ("example2");
RGBmode 0;
gconfig(;

// create an empty object
NPSobject firstobj;

// create an object and initialize from a file
NPSobject secondobj ("secondobj.gdlf));

// initialize the first object
firstobj.readfromQ(firstobj.gdlw);

// define the objects
firstobj. define( ;
secondobj.define (;

// put up a view volume and any transfomations
perspective(450,1.25,10, 1024);
ookat(0, 0, -150, 0, 0, 0, 0);

// display the objects
firstobj, display (?);
secondob j.displayo;

I/ exit
)

Figure A.4 Simple use of NPSobjects

The most convenient way to construct an NPSobject is to provide a valid NPSGDL

object description file name to the NPSobject constructor as shown in Figure A.4. When

this constructor is used four things happen. First, the named file is opened for reading.

Second, the tokens in the file are read to initialize the list of tokens in the NPSobject.

Third, the NPSobject is optimized. Lastly, the description file is closed. Optimizing an

NPSobject involves sorting the Drawtokens into resolution lists and Deftokens into a

definition list. These special lists reduce the number of tokens traversed for various

operations giving a small performance boost. Using the filename constructor or the

NPSobject::read from(char *filename) method ensures that NPSobjects get

optimized. If you use any other means of NPSobject construction/initialization you should

ensure that the object is optimized.

65



After an NPSobject is initialized it must be defined. The NPSobject: :define()

method does this. The definition process traverses the tokens that make up an NPSobject

and defines any Deftokens found. As mentioned before, Deftokens represent system

settings that are stored for random access by other tokens. Many Deftokens contain

information needed by the SGI GL. The define () method ensures that all system

information is initialized before the rendering process.

Once all NPSobjects have been defined, they are ready to be displayed. Providing that

no errors occurred during construction, initialization, or definition and that all Settokens

use valid names, your NPSobjects should display themselves when you invoke

NpSobject: :display () . The display method for NPSobjects has a single parameter that

specifies the display resolution. The default for this parameter is HIGH. You can specify

HIGH, MEDIUM, or LOW to display an NPSobject at various resolutions. As mentioned

above the default display mode is single resolution.

That is basically all there is to using NPSGDL. Figure A.4 shows the basics of what is

needed and how it looks. The essential steps beyond those normally required for a graphics

application are:

I. Include "NP Sob ject.H"

2. Construct an NPSobject giving a filename.

3. Ensure a valid GL window is open and active.

4. Define the NPSobject.

5. Set up the graphics loop.

6. Display the NPSobject when needed at various resolutions.

Considerations for NPSGDL object use

There are several things that you should be aware of when using NPSobjects. The

first is using global objects. NPSGDL uses a highly dynamic scheme to initialize the

language system at run-time without user intervention. It does this using a combination of

special constructors in each of the token classes and static objects. The static objects enter

66



token information into a system table that is used to read description files. While this is

powerful, there are drawbacks from the user's point of view.

The first drawback stems from the use of static objects. The C++ language gives

minimal guarantees concerning static object construction. The only guarantee given is that

all global objects will be constructed prior to the invocation of main () or their first use in

the module they are declared in. For this reason you can not construct global NPSobjects

and initialize them from a file. This is because the system table that contains token

information can not be created or initialized before your object is constructed. Thus, the

only way to facilitate global NPSobjects is to construct empty objects or use NPSobject

pointers and initialize the objects within the scope of main ).

The second drawback of the dynamic initialization scheme of NPSGDL is discussed

in detail in the body of the accompanying thesis. In essence, normal use of an NPSobject

does not generate references to NPSGDL token modules so the linker does not link them

in. To remedy this, a special class is used to register each token class, generating the

unresolved references needed to link the token modules to your application. The

consequence of thig is that most or all of the NPSGDL token modules get linked to your

application whether you use them or not. A method was devised to allow users to

selectively link to the entire NPSGDL library or individual modules based on the tokens

used in application object description files. However, actual use of this method was

cumbersome and often resulted in confusion. For this reason, the automatic method is used.

In general, you should not see any effects on your program from this method except for

executable size.

Another consideration for using NPSGDL objects is that they require that a valid,

active window be open to receive SGI GL requests and commands. Many of the NPSGDL

token define and display methods call GL functions that issue commands affecting the

graphics system. These functions are valid only if a window is open.

Note: If you don't open a window before defining or displaying an NPSobject your program will most

likely cause a graphics error and core dump.

67



NPS Object File Format (OFF) compatibility

NPSGDL is an outgrowth of the NPS OFF system. As such, NPSGDL will read and

use OFF object files that are in the correct format. The correct format is specified in Book

Seven of Dr. Zyda's graphics notes series. NPSGDL extends the format of many of the NPS

OFF tokens. When reading an OFF file, NPSGDL will issue a warning when it expects a

value that the OFF format does not provide. A reasonable default value is used in these

cases. To ease the use of OFF files with NPSGDL, a simple conversion utility is provided

in the NPSGDL directory. The utility, off2gdl, will read an OFF file in any valid format

and convert it to a GDL file using the default values for any missing parameters. You can

then edit the GDL file with any ASCII text editor to modify the object descriptions. The

syntax for using off2gdl. is shown below in Figure A.5.

Note: In general you should use different names for the source and destination files to preserve the

integrity of your source file.

off2gdl source off file.off dest gdl file.gdl
(extenders optronaT)

Figure A.5 Using the off2gdl file conversion utility

68



NPSGDL SUPPORT CLASSES

NPSGDL classes utilize many relatively simple classes to implement low-level

behavior. These support classes are mostly either concrete data types (classes that act like

built i~n types) or instantiations of template classes. A separate collection of classes named

NPSCL (NPS Class Library) provides most of the support classes that NPSGDL uses.

Other classes were designed specifically for NPSGDL but can be generally useful. This

section serves two purposes. One is to introduce the support classes so that you are familiar

with their names and functions. Subsequent references to these classes in later sections

assume that you have read this section. Secondly, the classes used to support the NPSGDL

token classes that are not part of the NPSCL library are discussed in detail. These classes

provide capabilities that will likely be useful in both NPSGDL and non-NPSGDL

applications. Also developers maintaining or extending the NPSGDL system will need

sound knowledge of these classes and their capabilities.

The NPSCL Classes and Templates

The NPS C++ Class Library was created as a basis for NPSGDL development. As

such, NPSGDL uses it's component classes extensively. The classes in NPSCL are either

stand alone concrete data types or class templates. A concrete data type is a user-defined

data type that has methods and operators defined that allow it to behave well on it's own,

much like the built-in types. Class templates are generic class definitions that can be

instantiated with different types or classes. Templates are very useful to define container

classes, classes that hold other classes like a linked-list. NPSCL implements it's template

classes using regular C macro definitions relying on the preprocessor for macro expansion.

The issues involved with this are discussed in the NPSCL manual. When discussing use of

the template classes, I will use the macro template syntax instead of the standard C++

template syntax. When NPSGDL was implemented, a C++ compiler with template support

69



was not available. Future modifications to NPSGDL and NPSCL will likely add true

template support. For our purposes, the only difference in syntax between C++ templates

and macro templates is that C++ templates use the angle brackets, '< >', and macro

templates use parentheses, '0'. The macro template syntax can be confusing at first because

the template name and type parameter look like a function call. Occasionally it is necessary

for a user or developer to use the actual type name of a template instantiation rather than

the template syntax. This is necessary because the preprocessor does not expand the nested

macros. Figure A.6 illustrates this.

#include "genarray.H" // NPSCL array template
#include "genlist.H" I/ NPSCL linked list template
#_nclude 'String.WH 1/ NPSCL string class

// declare and instantiate a list of strings
DeclareList(string); // macro expands to class definition
ImplementList(string); // macro expands to class implementation
ImplementList2 (string);

// Now we have lists of strings so the following is valid
List(string) my slist; // create a list of strings

II List(string) actually expands to List-string for the compiler

// now lets make an arr-y of lists of strings
DeclareArray(List string); // must use actual class name
// DeclareArray(List(string)) doesn't expand properly
ImplementArray(List string);
ImplementArray2 (LisE string);
ImplementArray3 (List-string);

Array(List string) listarray; // create an array of lists
Array(ListTstring)) listarray; // macro expansion error!

// put a string in the list and add the list to the array
my slist.add at tail("Aren't Templates Fun?");
liStarray.puish(fty-slist);

Figure A.6 Template Usage Fragment

The classes used by NPSGDL include string, Date, Array(T), Ust(T) and

HashTable(K,T). You should consult the NPSCL manual for details on the methods

available and behavior of these classes.

Nott: In later sections the above names will be used to refer to NPSCL classes. Standard C strings will

be referred to as C strings' or char*. The 'T" parameter for the template classes represents any valid type.

70



NPSGDL Low Level Classes

There are template instantiations and stand alone classes that NPSGDL uses that can

be generally useful. The template instantiations involve Array(T)'s and reference counted

pointers, Refptr(T). Reference counted pointers are discussed in detail in a later section as

well as in the body of this thesis. These pointer classes are used in the Deftoken classes to

manage Deftoken instances in the corresponding table. All of this is discussed below.

When working with Deftokens directly from application code, use reference pointers to

maintain the integrity of the simple garbage collection system used by NPSGDL. By

including the header file for a Deftoken, you gain access to the Refptr for that class. So if

you need to use a Refptr for a Deftoken, remember that they are already available through

NPSGDL. Refptrs for other NPSGDL classes, except NPSobiect and Token, will need to

be instantiated explicitly. See the NPSCL Users Manual for details on using the Refptr(T)

template.

NPSGDL instantiates the Array(T) template for the types float, vertex and vertex2.

Vertex and vertex2 are discussed below. As described in the NPSCL manual, the Array(T)

class implements a dynamically sized/resized, robust array of objects with many

sophisticated capabilities. There are many applications in graphics for an array of floating

point numbers. Likewise for arrays of vertices. If you find yourself needing these objects,

remember that NPSGDL already provides them in it's library. The header files for these

objects are shown below in Table A. I.

Table A.1 Predefined Array Classes

Array Class Header files

Array(float) farray.H

Array(vertex) varray.H

Array(vertex2) v2array.H

Many graphics applications involve defining and manipulating object vertex

coordinates. All locations within a coordinate system can be thought of as a single vertex,

71



either as part of an object like a polygon or as a point location like the origin. Likewise

every vertex can be iepresented by a vector from the origin of the coordinate frame to the

vertex location. NPSGDL uses vertex and vertex2 classes to represent and manipulate

vertex coordinates. The vertex class does double duty by providing simple vector

operations like length, and dot and cross products. The vertex class represents three

dimensional vertices while the vertex2 class is two dimensional. The vertex classes

provide methods to access the coordinate values by name or array subscript style. Also

vertices can be added, subtracted, scaled as well as read from and written to streams. They

are versatile and useful in many contexts. Figure A.7 and Figure A.8 show the public

interface of the vertex class. The vertex2 interface is identical (parameters will be vertex2

types, etc.) with the exception of the vector operation methods. Figure A.9 shows a code

fragment illnstrating the use of the vertex cla..s

72



/* this file contains the definition of class vertex. A vertex
contains the coordinates
for a 3D point.*/

class vertex {
public:

inline vertex();
II construct an empty vertex - 0,0,0

vertex(float x, float y, float z);
// construct a vertex from given values

vertex(const vertex&);
// construct a vertex from another

vertex& operator-(const vertex&);
// assign the value of a vertex to this

inline float& operator[] (int i);
// access xyz values by array index (range checked)

int operator=-(const vertex& v) const;
// compare vertices for equality (all members equal)

int operator<(const vertex& v) const;
// com pare vertices for order
// (all members of this less than v)

vertex operator+(const vertex& v) const;
// add the contents of v to this and create a new vertex

vertex operator+(float add);
// non destructive addition of a value to each coordinate value

vertex operator-(const vertex& v) const;
// subtract the contents of v from this and create a new vertex

vertex operator-(float add);
// non destructive subtract of value from each coordinate
vertex operator*(float sc) const;
// non-destructively scale the value of a vertex

vertex operator/(float div) const;
// non-destructively scale the value of a vertex

vertex& operator +-(float inc)!
II destructive addition of vertices

vertex& operator -- (float inc);
// destructive subtraction of vertices

operator float*() I return v;)
// provides normal C array behavior. Use with caution

float distance(const vertex&) const;
// return the distance betwen this and the arg

Figure A.7 Class Vertex Declaration

73



vertex midpoint (const vertex&) const;
/return the midpoint on the line defined

// by this and the argument

vertex cross(const vertex&) const;
1/ Return the vector cross product of this and the arg

float dot(const vertex&) const;
// returns the vector dot product of this-and the arg

float length() const;
// returns the vector length of this vertex

float x() const ( return v[0];)
// read the x coordinate by name

float y() const ( return v[l];)
// read the y coordinate by name

float z() const ( return v[2];l
// read the z coordinate by name

void x(float x) { v[O] - x;j
// write the x coordinate by name.

void y(float y) { v(l] = y;)
// write the y coordinate by name

void z(float z) I v[2] - z;)
// write the z coordinate by name

void read from(istream&);
// read the-coordinate values from a stream

void store on(ostream&) const;
// write t~le coordinate values on a stream

1;

ostream& operator<<(ostream&, const vertex&);
istream& operator>>(istream&, vertex&);
ostream& operator<<(ostream&, const vertex*);istream& operator2>(istream&, vertex*);

Figure A.8 Vertex Class Declaration (cont.)

74



#include "vertex.H"

// create two vertices, one at 0,0,0 one at 10,10,10
vertex v1, v1(10, 10, 10);

// read the first vertex from an open istream
cin >> vl;
// translate v1 by v2 saving v1
vertex v3 - vi + v2;
// compute the normal to the plane defined by vl and v2
vertex n - v2.cross(vl); // v2 into vi

// write the vertices to an ostream
cout << 'vl - " << vl << endl;
cout << "v2 - << v2 << endl;
cout << "v3 - vi + v2: " << v3 << endl;
cout << 'normal of v2 into vi is " << n << endl;

// if the y value of the normal is negative make it positive
if(n.y() < 0){
n.y(-n.y());
// better yet recompute the x product
n - vl.cross(v2);I

Figure A.9 Sample of vertex use

75



NPSGDL SYSTEM DETAIL

This section discusses the low level details of the NPSGDL system. The details of how

objects are used, class relationships, object and module interactions and the special

subsystems used by NPSGDL are presented. Specific descriptions of class data and method

details are discussed in the next section, NPSGDL Class Details. This section is more

technical than prior sections and assumes a solid basis in C++ and object oriented concepts.

The information in this section is not necessary for common users, it is tuned more towards

developers who are maintaining or extending NPSGDL. However if you have the

background and interest, the information in this section will help you understand how

NFSGDL works, helping you debug your NPSCL applications and object description files.

The C++ language supports many paradigms of programming. It is object oriented

constructs can be used on many levels. NPSGDL is highly object oriented and uses all of

C++'s object oriented constructs extensively.

The NPSGDL library is made up of a Token hierarchy and the NPSobject class. The

NPSobject acts as a container/manipulator of Token objects. The Token hierarchy

provides the functionality of the system. Several subsystems are employed by NPSGDL to

provide object persistence, reference counted garbage collection, and run-time type

checking. Each of these components is discussed in detail below.

The NPSobject

The NPSobject has been discussed in previous sections of this guide. So you can have

already seen some of this material. The NPSobject is essentially a collection of Tokens.

This collection is organized as a doubly-linked list of Token Refptrs. Refptrs are

reference counted pointer objects. These are objects that behave like pointers with the

added ability to track pointer references to objects and automatically destroy the object

when it's reference count goes to zero. This is discussed in detail in the section concerning

76



the garbage collection subsystem. For now, just remember that a Refptr is like a normal

pointer used in the garbage collection system. Notice that the list of tokens in the

NPSobject is a list of pointers to Token objects. The Token class is the base class for the

Token hierarchy. The NPSobject manages all Tokens generically, that is it is normally

not concerned with the actual type of Token attached to a Token Refptr. This method of

object management is the core of most robust object oriented system. Since the NP,.rnbject

only needs to know about Tokens, we can add new Tokens to the hierarchy and have them

work perfectly with the NPSobject. There are a few cases where the NPSobject needs to

know the type of individual Tokens but these are few and in general you can think of the

NPSobject as only having knowledge of generic Tokens.

Each NPSobject also has four special lists that are used to increase the performance

of the class. When an NPSobject is optimized, it's main token list is traversed and the

Tokens are sorted onto these special lists. The special lists contain pointers to Deftokens,

high resolution Drawtokens, medium resolution Drawtokens, and low resolution

Drawtokens. The Drawtoken lists will also have pointers to Settokens and

Xformtokens to that the appearance of an object is preserved across the separate lists.

These lists are generally shorter that the main list. Also the lists separate tokens by

functionality. As explained below, not all tokens implement the entire Token interface. For

example calling the display method on a Deftoken is a no-op but still costs a function call.

The special lists help ensure that these no-op calls don't happen as they would if a single

list was used. The single main list is still necessary to maintain the proper composition of

the object in case the object is written to a file.

An NPSobject has additional data members that provide information to the user at

run-time. This data is extracted from tokens contained in an object description file. If the

file does not provide the information, default values are used but are not saved if the

NPSobjAct is written. The information items are name and origin. The name of an object

is specified by the Name token. If an object description file does not have a Name token,

the name of the NPSobject will be empty. The origin of an object is specified by an Origin

77



token. The default origin of an NPSobject is 0,0,0. Methods are provided to access the

name and origin of an NPSobject.

The interface of the NPSobject class is similar to most other objects in NPSGDL. All

objects in the system can read themselves from a stream, write themselves to a stream,

define themselves, and display themselves. This makes using and extending NPSGDL

simple and consistent. The define, display and store (write) methods on an NPSobject are

implemented as simple traversals of one or more of the object's token lists forwarding the

request to each token in the list. Polymorphism, through virtual functions, ensures that the

correct behavior occurs based on the actual type of the token object attached to the base

pointer.

Reading an NPSobject from a file is a bit more involved but not too difficult. As

explained in the next part of this section, the Token class maintains a table of token

information that allows tokens to be recognized on a stream. The Token class provides a

method for sequentially retrieving tokens from a stream. This method returns a Token

Refptr. When reading an object description file, the NPSobject simply opens an input file

stream and calls the Token retrieval method until the end-of-file is encountered, storing the

Token Refptrs in it's main list.

Occasionally it's important to know the boundary extent of an object. The getbounds

method provides this information. The getbounds method traverses the main list looking

for Drawtokens. Each Drawtoken is asked for a list of it's vertices. The vertex values are

compared to current bounds values for the NPSobject to produce the NPSobject's

rectangular bounds. The bounds information is stored in a float [ 31 [ 21 array provided by

the user. The bounds information is stored as xmin, xmax, ymin, ymax, zmin, and zmax.

The NPSobject provides most of the functionality that many users will ever need for

application support. However, developers of tools and utilities that manipulate objects need

more control over NPSobjects. For these users, the NPSToolobject is provided. The

NPSToolobject is a subclass of NPSobject and thus retains the functionality of an

NPSobject. An NPSToolobject adds method for adding and deleting tokens from an

78



object, extracting groups of tokens, iteratively traversing the token lists, appending objects,

and managing subobjects. These methods are relatively straightforward and are detailed in

the class description later.

The Token Hierarchy

The Token hierarchy provides ninety percent of the functionality of the NPSGDL

system. As discussed above and in the main thesis, the language recognized by the system

is broken down into tokens. Each token can be composed of zero or more fields. Each token

represents a different graphical entity like a material defintion or polygon. Each token in

the language is represented by a separate class in the Token hierarchy. The Token class

interface specifies the common behavior for all tokens. Virtual functions are used to allow

dynamic dispatch of function calls (messages) so Token pointers can be used to manage

derived tokens. The Token class doesn't provide very much functionality. It provides

default methods so that derived classes aren't required to override the entire Token

interface. Most of these methods are empty (no-op).

Each Token has a unique integer identification that is initialized during construction.

This id is used to test for Token identity verses equality, which is normally based on the

contents of a token. A method is provided to retrieve the id of a Token. This can be used

to maintain uniqueness when required.

The Token class manages the NPSGDL persistence subsystem. This is discussed in

detail later. The basis of this system is a table, the tokentable, contained in the Token class

that relates token names to addresses of methods that construct a token from a stream. This

table is initialized dynamically at run-time. Each token in the hierarchy registers it's

information with the tokentable using a special constructor and a static instance of the

token. This scheme makes it easy to extend the NPSGDL language by adding new tokens.

The disadvantages are related to linker technology and have already been discussed. Along

with the tokentable, the Token class provides a method which sequentially reads tokens

from a stream using the information in the token table.

79



Every token in the Token hierarchy shares a common interface. Most of methods in

this interface are overridden by derived classes to provide the correct behavior. Where

overriding is not needed, the Token class provides the default behavior. The interface and

expected behavior are shown inTable A.2. Using this interface in conjunction with virtual

methods, clients of the Token hierarchy, like NPSobjed, can deal with tokens generically.

The power of this is evident in the simplicity of the NPSobject implementation and the

ease with which new tokens can be added to the system. Adding new tokens to NPSGDL

is shown in detail at the end of this section.

Table A.2 The Common Token Interface

Method Name Description

Default constructor Initializes an empty token.

Copy constructor Initializes a token from another.

Reader constructor Initializes a token from a stream.

Table init constructor Registers information in tokentable.

void readfromO Reads token description from stream.

void storeon( Writes token description to stream.

void define() Defines a token to the system if necc.

void display() Displays a token if applicable.

void operator=-() Copies the contents of another token

compatible type.

bool operator=--() Compares two tokens for equality.

bool operator<() Compares two tokens for ordering

Token *clone() Creates a distinct copy of a Token.

The Token class has five direct subclasses that serve to categorize derived tokens.

These classes are Deftoken, Settoken, Drawtoken, Xformtoken, and Othertoken. These

category classes serve two purposes: provide functionality common to all of their base

classes and provide a common umbrella for type classification. The rmn-time type

80



information system has the ability to test a type for membership in a hierarchy. For example

you can ask the type system if a Defpoly token is a Drawtoken or a Token. Both of these

queries will be true. So even though the classes in a category can not share any common

functionality, as with Othertokens, the category class serves to group related classes.

Deftokens

The Deftoken class represents all of the tokens that represent system definitions.

System definitions are things that are stored for random access by the user or other tokens.

Some Deftokens represent entities that the SGI graphics system must know about before

they can be used. These tokens represent things like materials, textures, and lights. Most

Deftokens use a closed format that ends with a defend field. The exception to this is the

Readobject token. The Deftoken class is responsible for reading and writing the name

given to the token. It expects the name to be given on the same line as its identifier.

Each Deftoken subclass contains a static HashTable(K,T) which contains Refptrs to

token instances. These tables are keyed on the token's name. These tables are normally

used by other tokens to access the definition information of a Deftoken. However, they are

declared public so any user can access the Deftoken tables. This can be useful to make a

system wide change to a definition or some other manipulation of a class of Deftokens.

The interface for the HashTable(K,T) template class is presented in the NPSCL manual.

All Deftokens provide a define () method which overrides the default method. None

of the Deftokens override the default display() method. Table A.3 lists the current

Deftoken subclasses.

Each Deftoken puts a default instance into it's table named "default". This instance is

used by the system when an error occurs in a corresponding Settoken.

81



Table A.3 Deftoken Subclasses

Defmaterial Deflight Deflmodel Defcolor Defobject

Deftexture Deftexenv Deftexgenalg Defvariable Defocamera

Defpcamera Defviewpoint Readobject Defsound

Settokens

The Settoken class is closely related to the Deftoken class. Settokens are normally

paired with Deftokens and provide the means to use previously defined information. Many

Settokens relate to GL functions that affect the state of the rendering pipeline like

activating a material or color. The Settoken class is responsible for reading and writing the

name given to the token. This name must match the name of a previously defined

corresponding Deftoken. If the Settoken name does not match any corresponding

Deftoken name, the name "default" is used. This name will match a valid definition.

Most Settoken formats consist of a single line. Following the Settoken identifier is

the name of the Settoken and optional state information. Many Settokens can be turned on

and off. This feature allows ycx fine control over object behavior.

All Settokens define the display() method. The display() method is used to

activate the behavior of a Settoken. The define o method for Settokens is inherited

from the Token class providing the default behavior, which is a no-op. Table A.4 lists the

current Settoken subclasses.

Table A.4 Settoken Subclasses

Setmaterial Setbackmaterial Setlight Setimodel

Settexgenalg Settexenv Setocamera Setpcamera

Setcolor Settexture Setviewpoint Setsound

82



Drawtokenw

The Drawtoken class categorizes the tokens that have visible displays. These tokens

represent the graphical entities that make up the visible part of an object. All Drawtokens

have a resolution that is used for multi-resolution display management. It is the

responsibility of the Drawtoken class to read and write the resolution of a Drawtoken. The

default resolution is High.

Drawtoken formats are both open and closed. The tokens that represent lower level

primitives are normally open like the Defpoly example in Figure A.2 on page 58. Other

Drawtokens, like Defsphere, have closed formats.

Al Drawtokens implement the display() method. Like Settokens, the define ()

method is inherited and is a no-op. Also, as noted above, a GL window must be active to

receive the display commands from the Drawtoken. Table A.5 lists the current

Drawtokens.

Table A.5 Drawtoken Subclasses

Defpoly ADefpoly Defsurface Deftmesh Defqstrip

Callobject Defdecal Defline Defsphere Defcylinder

Defcone Defcircle

Xformtokens

The Xformtoken class serves as base to those tokens that alter the transformation

matrices used to render objects. Xformtokens are not named and don't share any common

behavior. Therefore the Xformtoken class has no responsibility to it's subclasses. Several

of the Xformtokens are animated tokens. This means they accept animated variables,

Defvariables, as one or more of their parameters. The use of animated tokens is powerful

as was discussed above.

83



Xformtokens define the display ) method to implement their behavior, using the

default define () method.

Xformtokens are closely related to the GL functions they represent. This allows the

user to use transformation matrix manipulations within an object description file much like

he would in application code. Table A.6 lists the current Xformtokens.

Table A.6 Xformtoken Subclasses

A_Scaletok A_Tanslatetok ARotatetok Scletok

Translatetok Rotatetok Pushmatrix Popmatrix

Loadunit Loadmatrix Multmatrix

Othertokens

The Othertoken class serves as an umbrella for those classes that provide auxiliary

functions to NPSDL. These tokens have varying, normally simple, formats. The

Othertoken class does not provide any services to it's subclasses. Currently, none of the

Othertokens implement the define () or display () methods. They inherit the default

implementations from class Token. Thus their main purpose is to hold information that is

used for reading and writing or by other Tokens and NPSobjects. Table A.7 lists the

current Othertoken subclasses.

Table A.7 Othertoken Subclasses

Nanie IOrigin I Comment I Lcomment

Note: The following three sections are essentially the santm as the corresponding sections in die main

thesis. They are presented here for completeness.

The NPSCL Run Time Type System

NPSCL provides several support systems that NPSGDL uses extensively. The firft is

a simple run-time typing system. NPSGDL requires run time type information so that

84



downcasts from a base class pointer to a derived class pointer can be validated. The

situations where this is necessary are normally either in the NPSobject implementation or

in application code. Because the NPSobject maintains a list of Token pointers, operations

like identifying all the Drawtokens requires run time type information. The type system

provided by NPSCL is simple and relatively easy to use. The type system is non-intrusive

meaning that not all classes must participate, although there is little reason not to include

all classes. One thing the type system does not currently support is the ability to query the

type system with strings. It might be useful to ask an NPSobject for a list of all the

Drawtokens it contains. This operation is not supported because the system has no general

association between a typename and the class that contains the type information. Still this

type system is useful and effective. It imposes little space overhead on client classes and

very little performance overhead by using inline methods where possible. Also since run-

time type inquiries are the exception rather than the norm, the system is not a factor in most

performance studies conducted.

Basically each class has a public static data member that contains a string identifier for

the class and a list of immediate base classes for the class. The class that contains this

information is the Type-info class. Methods and macro support allow the user to query the

type of a class, determine if a down-cast is safe, compare for type equality and other helpful

functions. The user interface to the type system is primarily macros which automate the

Type-info class method calls. Alternatively the user can directly access and use a classes

Type-info member as it is public. The macro interface relies on the fact that all Type-info

data members share the same name and that each class defines required methods to access

it's Type-info member. To enforce this, a macro, DeclareTypeinfo, is placed in the public

section of every participating class. Similarly, a macro, ImplementTypeinfo(CLASS,

NAME, LIST), automates the initialization of the type system with a class's type

information.

Using the run time type system is simple. Figure A.10 shows an example of the typical

operations that a user of NPSGDL might use. It is very easy to abuse a system like this. In

85



general, designs that rely on virtual function dispatch to get type specific behavior are better

than using run time type information and setting up conditionals.

Note: Refptrs can not be cast directly by the type system. This is because if the cast is valid, the

statement 'return (T*) p' is executed. If 'p' is a Refptr you are trying to cast an object which is uncool. When

using Refptrs, first convert them to a normal poiw~ter. then test for the down-cast. Exercise caution when

mixing normal and Refptrs as noted in the section on reference counting.

// use a base pointer to access a derived object
Token *bp - new Defmaterial;
// test for explicit type
if(ptr type info(bp) - static type info(Defmaterial))
cou << ThTs guy is a Defmatelial!1;
// let's test for valid down-casts
Deftoken *defp - ptr cast (Deftoken,bp);
Defmaterial *dp - ptF cast (Defmaterial,bp);
// Both defp and dp s~ould be non-null and valid
Rotatetok *rp = ptr cast (Rotatetok,bp);
1/ rp should be nulT - invalid cast

// We can inquire about an objects heirarchy too
if(ptr isA(Deftoken bp))
ii add-to Deftoken list

Figure A. 10 Run Time Type System Use

In addition to the string based type system described, NPSCL provides a simple object

identification capability based on integers through the Object_id class. The Object-id

class provides each client with a unique integer starting at 100. Using this system each class

instance is given a unique integer identity that can be used for more refined identity testing.

The Objectid class does not allow write access to it's id value. This prevents id sharing

or copying. These integer identifiers are used by NPSGDL for various Silicon Graphics,

Inc. GL functions, like lmdef 0, among other things.

Reference Counting System

Another system extensively used by NPSGDL is a simple reference counting garbage

collection system. In order to save space and improve efficiency, many token objects are

shared between each other and NPSobjects. For example, consider two NPSobjects.

Each is associated with a description file that defines a "gold" Defmaterial. We only want

one copy of the Defmaterial but each NPSobject must contain a copy in the event that the

86



NPSobject must write itself to a file. In this case, the first Defmaterial read would allocate

space and insert a pointer in a table. The second NPSobject would get a pointer to the first

instance rather than a new one when the Defmaterial is read. To support this with a

minimum of developer effort, NPSCL provides a simple reference counting system using

smart pointer objects. This system is based on the examples in [15] and are similar to the

"letter-envelope idiom" in 1161. Basically every class in the NPSGDL system contains a

reference count member and methods to increment and decrement the count. This member

is introduced by deriving all classes from class Countable. Class Countable is defined in

the NPSCL file gencount. H. If an object's reference count decrements to zero, then it is

destroyed and its memory is returned to the memory system. The management of the

reference counts is the responsibility of a tiiend class that encapsulates a pointer to the

referenced class. This class is generic and uses templates to provide type safety. The pointer

class, called a Refptr in NPSEZL, overloads operators to behave as a normal pointer with

the addition of adjusting reference counts as pointers are assigned, copied and destroyed.

There are several advantages and disadvantages to using this system. Many relating to

garbage collection in general:

Advantages

1. System is simple and easy to use.

2. Frees developer from many memory management chores.

3. System is non-intrusive. It can be used or not used as desired.

Disadvantages:

1. System imposes overhead on pointer manipulation. Little overhead is imposed
for pointer use or access.

2. User can break system by mixing real pointers and Refptrs.

3. Systmni doesn't detect circular references that might result in unrecoverable

memory.

Despite these disadvantages, this system is used in NPSGDL to great success. In

normal use, the circular reference problem is not encountered and the overhead is only

87



noticed at non-critical times such as object creation/initialization. Other phases of an

object's use normally involves accessing the object pointed at and this operation has little

to no overhead due to the use of inline methods.

The primary limitation to using this garbage collection system is placed on the

developer. The developer must ensure that real pointers are not mixed with the smart

pointers across scopes. This is to prevent the system from deallocating an object still

referenced by a real pointer. For example, it would be an error to create a dynamically

allocated object within a function, assign the object to a local Refptr and then return the

object using a real pointer. The error is that the local Refptr is destroyed on function exit;

the refptr will in turn destroy the object since it is the only Refptr referring to it. In general

it is not a problem to mix Refptrs and real pointers as long as the real pointer has a smaller

scope than the corresponding Refptr. This is not a problem for the typical user as all object

management is taken care of within NPSGDL. It is a consideration for developers of tools

and those managing custom collections of NPSGDL tokens.

Another consideration is destruction of objects accessed by Refptrs. Refptrs can not

be used as arguments to the delete operator. Consider a dynamically allocated object

attached to a Refptr named rp. It would be a compiler error to say "delete rp;" because

delete requires a pointer, not an object, and the Refptr is not converted to a normal pointer

in this case. Likewise, deleting the object via a real pointer would be wrong. This would

break the reference system because the Refptr would try to delete the object a second time

when the Refptr is destroyed, besides the fact that the decrement of the object's reference

count would probably fail because the object has been destroyed. To get the desired effect,

simply reassign the Refptr thereby decrementing the object's reference count to zero and

destroying it. Since NULL is a valid pointer value we can simply say "rp - 0; ". Zero is

preferred over NULL because some NULL definitions result in type mismatches.

88



Object Sharing

NPSGDL tries to take advantage of as much object sharing as possible. Object sharing

serves to reduce memory requirements, reduce data duplications, and provide greater

consistency. In general the only objects that are shared within NPSGDL are Deftokens. As

mentioned before, each Deftoken class provides a table of pointers to it's instances. These

tables are used by clients to access previously defined data. The tables and the classes

themselves do not allow duplicates. Since the tables are indexed by token name this means

that two tokens of the same type can't share the same name and remain unique. This is

important to remember. Let's say two separate object description files define a

Defmaterial token named "Brass" but each definition is different. The first file read into

the system (typically through an NPSobject) will create a Defmaterial object named

"Brass" and add it to the Defmaterial table. When the second file is read (to a second

NPSobject), NPSGDL will give the NPSobject a pointer to the first "Brass" object rather

than create a second one. Thus if we write the second NPSobject back to a file the "Brass"

definition we will get will be the first one. The second is not maintained by NPSGDL.

When there is a duplicate clash NPSGDL issues a warning. Writing objects that have duplicate

token clashes can result in lost information!

Another important point about shared objects is to ensure that the reference system is

maintained when using them. The token table in the Deftoken classes are publicly

accessible. Developers and users are free to request pointers to tokens by name from the

tables. When doing this, it is generally better to use Refptrs to ensure the reference system

is maintained. If you use a real pointer to access a token being shared by others you risk the

chance that the token will be destroyed by the reference system while you are using it. Also

you must ensure that you don't destroy the token via the real pointer as this would

invalidate any other Refptrs/pointers accessing the token. If real pointers are used only for

short, local scopes there is normally no problem, but the responsibility is the developers.

Having all instances of a class of Deftokens in a central table is very handy. It makes

global changes very easy to do. Most Deftokens are used by corresponding Settokens. In

89



most cases the Settokens maintain pointers (Refptr) to a Deftoken. For instance, all

Setmaterlal tokens named "Brass" refer to the single Defmaterial token named "Brass".

Thus if we want to change the characteristics of the "Brass" material, all we have to do is

get a pointer to it from the Defmatedal table, make the change, and re-define the token.

The next display cycle should show the change through each Setmaterial referencing

"Brass". This example is shown in Figure A. II.

#include "Defmaterial. H"

void change Defmaterial shiny(string& name, float value)
// make a gTobal change-to a Defmaterial
II get a pointer to the Defmaterial
Refptr(Defmaterial) dp = Defmaterial: :table->lookup (name);
if(dp)f // got a valid pointer

Array(float) dproperties(MATSIZE) - dp->get propertieso;
dproperties[SHINY] - value; // change the sHininess
dp->set properties(dproperties);
dp->defineo; // redefine for gl

dp - 0; II assign to NULL to force dereference
// this would also happen at end of scope

II array is destroyed at end of if() scope
II NOTE: because the scope of this example is limited we
// could have used a real pointer (Defmaterial *dp)

Figure A. 1I Object Sharing Example

There are many tokens besides Deftokens that could be shared. The Setmatonal

"Brass" token in the example is likely duplicated around NPSGDL objects. While there

might be some memory space advantages to preventing duplicates in other tokens, the

support structures(tables) and algorithms required to implement this was deemed too

expensive.

The Persistence Model

A primary requirement for NPSGDL is the ability to store and retrieve object

definitions to/from secondary storage. Since C++ does not provide a standard persistence

mechanism, one was designed into NPSGDL. The persistence system was modeled after

several different systems, in particular the "virtual constructor" methods outlined in [16).

90



The primary responsibility for storage and retrieval is distributed among the NPSGDL

token classes. The most derived class controls most of the process. Each token implements

three methods, the read from, storeon and creator methods as well as a special "reader"

constructor called with an input stream. Each takes as input either an input or output stream.

The readfrom method expects the stream pointer to be located immediately after the

typename of the token and reads all fields on the stream applicable to itself until either an

ending flag is encountered, as in Deftokens with a closed format, or a certain number of

lines have been read, as with Defpolys which has an open format.

The store-on method stores the token typename and data values in the correct format

on a specified stream. This method has a parameter that tells the token whether it should

output its typename with its data. Using this parameter, derived classes can have super

classes output their data without inserting extraneous typenames on the stream. The only

typename that should be put on the stream is the most derived name.

The creator method is a static method. This is important because it does not work on

a per object basis. The creator method's function is to allocate a new instance of a token

and initialize it from an input stream using the "reader" constructor. The creator then

returns a pointer to the new token to the caller. The creator method acts as the virtual

constructor as explained below.

Using these methods, each token provides facilities to read, write and initialize itself

from streams. Still there must be some object or process in overall control of all this. All of

the typenames currently valid in the system must be known in order to recognize them on

an input stream. Also, once a typename is recognized, there must be a way of telling the

correct token to initialize itself from the stream. This responsibility is delegated to the

Token base class. The Token class contains a static table of Tokeninfo objects called the

tokentable. A Tokeninfo object associates a token's typename and the address of its creator

method. The Token class provides a public static method called readctoken0 that will

process an input stream using the following general algorithm:

91



1. Read a string, assume it's a token identifier

2. Look up the identifier in the tokentable.

3. If the identifier is valid then get the tokeninfo object for that token, else issue
an error and return.

4. Call the identified token's creator method, via the tokeninfo object, passing
the input stream in.

5. The creator will return a pointer to a valid token initialized from the stream.
Return the token pointer to the caller.

The read_token method is called repeatedly by the NPSobject::readfrom method

until the end of file is reached.

An important consideration in the design of NPSGDL was the initialization of the

tokentable. One of the primary design goals was to be able to add new tokens to the

language system with minimum effect on other modules. The ideal being providing a

header (.h) and implementation (.C) file for the new token(s) and adding the object module

to the library archive. This ideal is very close to being met. The tokentable is initialized

dynamically using a special constructor in each token and a special instantiation of each

token.

The special constructor is one that takes as its sole argument a Tokeninfo object. As

mentioned above, the Tokeninfo object is the object placed into the tokentable. The base

class Token's special constructor places the Tokeninfo object into the table. All derived

tokens simple call their base class's special constructor passing the Tokeninfo object along

to the root of the hierarchy.

In order for this system to work, this constructor must be used. Thus in each tokens

implementation file, a single static object of the particular token type is instantiated using

the special constructor. The C++ language guarantees that global static objects will be

constructed before main() is entered. So all of the static objects used for tokentable

initialization are constructed prior to main() ensuring that the tokentable is properly

92



initialized automatically at run-time. There is no need for user initialization. The Token

class's special constructor ensures that the tokentable is instantiated before it is used.

Since the special constructor is normally the first constructor that will be called for a

class, it is ideal for initializing any static data structures or default tokens. This is exactly

what is done in the Deftoken classes. Each Deftoken instantiates it's table within the special

constructor, ensuring that the table is properly initialized before any tokens are added to it.

Also the special constructor creates a default token, named "default" when named, that is

placed into the table. The default token is used by client Settokens when a Deftoken name

is not recognized.

This system for dynamic initialization works very well. There is one problem though,

current linker technology does not support this model well. Typical NPSGDL users use

only the NPSobject class and don't directly refer to the token subclasses. Since the

NPSobject classes deals with tokens in the abstract through Token pointers, it does not refer

to derived token," directly either. Thus there are normally no references to derived token

modules for the linker to resolve. The result is that the linker does not include the modules

for derived classes, the special instances of derived tokens are not constructed, and the

tokentable is not initialized properly.

The termFrrary remedy was to fall back to the more traditional method of having an

object or module that ensures that each module is linked in. Instead of having an external

class manage the tokentable initialization, there is an external object, called a

TokenRegistrar, whose constructor calls a static method named register.token0 provided

by each token class. This method does nothing. It is used solely to generate an unresolved

reference for the linker. The TokenRegistrar is instantiated in the Token module which is

always linked in. The advantage to this approach is that the registration functionality is

easily removed without affecting anything.

There is another consequence to using the registration method. NPSobjects only know

about the class Token. The actual derived tokens used are instantiated at run-time and

accessed via dynamically bound calls. Thus there is no way to know which tokens will be

93



needed by any set of definition files. Therefore all token modules must be linked to the

application. This results in large applications with possibly a lot of unused code. The

alternative is to preprocess definition files and only link the modules needed. However, this

is very limiting and establishes an application dependance. The definition files can't be

modified without preprocessing again. This method of linking (selective) is possible with

a minor modification to the NPSGDL system, outlined below.

This should only be done by the primary developer responsible for maintenance of NPSGDL!

To allow selective linking of NPSGDL modules you need to modify the Token.C

module and recompile the library. Comment out or remove the statement "static

Tokenregistrar registrar;" on line 22 of Token.C. The Token-registrar class

constructor contains calls to the registerjtoken0 method of all NPSGDL tokens. After this

change is done it is up to the user to ensure that the proper token object modules are linked

to an application.

GDL Macro Maker (GDLMM)

The utility GDLMM, GDL macro maker, is provided to assist in determining which

token modules are needed by an application. GDLMM works in conjunction with your

makefile to automate the linking process. GDLMM will read the NPSGDL object

description files provided to it and generate linking information for the token modules

needed for those object files. This linking information is inserted into your makefile in the

form of a macro that you use in your application compilation statement.

The syntax of GDLMM is:

gdlmm [-o exename] [-f makefilename] GDL_filename [...J

-f: The name of the makefide to modify. Defaults to "Makefile"

-o: The name of the application being processed. Defaults to ..... This name is used

to name the macro generated by GDLMM.

94



The GDLMM algorithm is fairly simple. First the file "gdlmodule.info" is read. This

file contains associations between token names and module patmnames. This info file must

be correct and up to date for the generated linking macros to be correct.

Second, GDLMM reads each GDL object file listed on the command line and marks

each token module that needs to be linked.

Third, GDLMM processes the makefile adding or modifying the macro definition for

the application being processed. It does this by scanning the makefile specified for one of

two strings at the beginning of a line: "exename_GDLMODULES= "or "#macroend"

where exename is the name provided after the -o switch. The string "#macroend should be

placed at the end of your makefile's macro definition area. GDLMM uses this string to stop

processing the makefile and to mark the location that a new macro should be placed before.

If your makefile does not contain either of the above strings, GDLMM will not output any

new macro definition.

Once GDLMM has processed an application's GDL object files and modified the

makefile, all you need to do is include the appropriate "_GDLMODULES" macro in your

compilation line.

If you are using this system of liking and want all of the token modules linked in as

in the normal system, simple define the link macro to link to the "tokreg.o" module. An

example makefile with GDLMM generated macros is shown in Figure A. 12.

This methoI of linking individual modules bypasses some of the normal object archive processing. In

particular all of the NPSGDL object code modules need to be available to the user. Also all of the object

modules should be compiled the same. Strange things might happen if the user links to modules with mixed

debugging or optimization modes. In general. If this system is used the NPSGDL object modules used for

linking should be the same as those used to build the normal. optimized library (no debug info).

95



# main makefile for NPSGDL programs

# this forces the linkage of all GDL modules
showobj GDLmodules- Inlgravy2/worklwilsonlthesis/NPSGDLI
Tokreg.5

robot GDLmodules- /n/grav-y2/work/wilson/thesis/NPSGDL/
A Rot~tetok.o \
/H/gravy2/work/wilson/thesis/NPSGDL/Defpcamera .o
/n/gravy2/work/wilson/thesis/NPSGDL/Loadunito .\
/n/gravy2/work/wilson/thesis/NP3GDL/Setmaterial .0
/n/gravy2/work/wilson/thesis/NPSGDL/Translatetok .0
/n/gravy2/work/wilson/thesis/NPSGDL/Defconeo \0
/n/gravy2/work/wilson/thesis/NPSGDL/Defvariable .0
/n/gravy2/work/wilson/thesis/NPSGDL/Defcylinder .0
/n/gravy2/work/wilson/thesis/NPSGDL/Pushmatrix.o\
/n/gravy2/work/wilson/thesis/NPSGDL/Popmatrix.o \
/n/gravy2/work/wilson/thesis/NPSGDL/Defsphere .0 \
/n/gravy2/work/wilson/thesis/NPSGDL/Couunent .0
/n/gravy2lwork/wilsorulthesislNPSGDLlLconunent .o

#ma croend

.SUFFIXES: .C .0

# implicit cornpile rules
.C.o:; CC -c ~(DBGFLAGS) $(INCLUDE) $-~.C
.c.o:; cc -c $(NDBGFLAGS) $(INCLUIDE) $"'Kc

showobj: showobj o . ./libDNPSGDL.a . ./../NPSCL/libNPSCL.a
CC -o sho-wob' showob j.o $(showobj GDLmodules) $(DBGFLAGS)

$(INCLUDE) $(LIBDIRS? $(DNPSGDLLIB) $(NPCL_LIB) $(GLLIB)
S(IMAGELIB)

robot: robot.o . ./libDNPSGDL.a . ./../NPSCL/libNPSCL.a
CC -o robot robot.o $(robot GDLmodules) $(DBGFLAGS)

$(INCLUDE) $(LIBDIRS) $(DNPSGDLLIBT $(NPSCLLIB) $(GLLIB)
$(IMAGELIB)_

# DO NOT DELETE THIS LINE -- make depend depends on it.

Figure A. 12 GDLMM macro example

Extending NPSGDL

One of the primary requirements in the design of NPSGDL was easy extension. This

is one of the prime reasons the object-oriented paradigm was chosen. This section will

illustrate, in detail, the process of adding a new language token to the NPSGDL system.

This section will provide the knowledge needed to add and/or maintain NPSGDL token

classes. It also discusses, in detail, the responsibilities of each method in a token class and

the considerations when implementing them.



The example extension will consist of a pair of cooperative tokens. These tokens were

actually added to NPSGDL for this example. The two tokens are the Defsound and

Setsound token. Here we will look at the Defsound token in depth and cover the Setsound

token later.

The first step is to define the role of the token within NPSGDL. NPSGDL was

designed to support application development in the graphics and video laboratory. Recent

hardware and software additions provide support for producing and controlling sound

effects within an application. By providing support for sound effects within NPSGDL we

offer an application independent method for managing sounds.

There are many issues that need to be addressed concerning the use of sound.

Reference LD present many of these issues and a solution currently used in the laboratory.

Essentially, sound commands are sent via a serial to MIDI line to a digital sampler/

sequencer keyboard. The sound command is a hexadecimal value that corresponds to a

particular sound on the keyboard. These sounds range from short transient sounds like

gunshots to continuous sounds like vehicle movement. A simple application programming

interface (API) is provided to control and produce sounds in the manner described above.

How NPSGDL will support sounds needs to be decided. Users typically use NPSGDL

on an object basis. That is, each major object in an application is described completely

within a single description file with possible sharing of definitions (Deftokens). Thus the

user thinks of a description file as an object with the understanding that the object will

typically be displayed each display cycle. This has important ramifications concerning

sounds. There are few sounds associated with an individual object that a user will want to

be played once per cycle. This would happen because we are going to use the Deftoken/

Settoken model and Seftokens are all displayed each cycle (a different model could be

used for sounds with a little more effort). Normally the user will want sounds tied to

specific object events. A separate class structure would probably be used to bring the

graphical and behavioral nature of an object together using NPSGDL and possibly other

systems. This does not mean that sounds won't work well within NPSGDL. Remember that

97



NPSGDL also supports a component based style of programming. Each of the token classes

can be used on it's own under user control rather than NPSGDL control. Using this style

we could have an NPSGDL description file that only contains Defsound definitions. This

file would be read into an NPSobject and that NPSobject defined early in an application's

execution. Then the user would be free to instantiate Setsound objects as needed and

simply display the Setsound to play it. Using NPSGDL gives us these advantages:

1. The ability to easily associate names to sound codes in an application
independent manner through Defsounds.

2. The ability to maintain numerous sets of sound definitions that can be selected
at run time or changed without application recompilation.

3. The ability to select and play sounds by name within an application through
Setsound tokens.

4. A sound management model that is easily changed or extended. Sounds might
correctly be an entirely new category of tokens.

We will design our Defsound/Setsound pair as follows:

1. The Defsound token will be derived from the Deftoken class. This is for two
reasons: First, semantically the Delsound token is associating and storing
data, the hex value, for later use by other tokens. All Deftokens do this.
Second, the Deftoken class will handle the reading, writing, and management
of the token name for us.

2. The Defsound token will associate a string name to a hexadecimal sound
value. All normal Deftoken methods will be implemented except possibly
define () because there is nothing that needs to be system defined.

3. The format of a Defsound will be:

defsound name hexvalue

4. The Setsound token will be derived from the Settoken class. This also fits
the semantics of Settokens. Settokens normally utilize the data in
Deftokens to activate or change a system state. The only anomaly of using
Settokens is having to use the display () method, a semantic name
mismatch, to produce the sound. The display () method must be used to
ensure that a Setsound can be used polymorphically with other tokens. The
display () method of a Settoken effects its main behavior.

5. The Setsound token will have a name that matches a previously read or

98



instantiated Defsound name. The Setsound token will implement all the
normal Settoken methods. Set sound: :display () will issue the sound play
command using the hex value of the corresponding Defsound.

6. The format of a Setsound will be:

setsound name

Note that based on the previous discussion Setsounds will probably be used

directly in applications rather than within description files.

Now we are ready to start implementing the tokens. We will start with the Defsound

class. The first thing to do is set up any support classes that are needed. Defsound is a

Deftoken and all Deftokens maintain a table of class instances. This table will be indexed

by name (strings) and contain Refptrs to Defsounds. This requires two support classes,

Refptr(Defsound) and HashTable(string,Defsound). Both are instantiations of NPSCL

template classes. Each of these support classes will have it's own header and source file.

The contents of these files is shown in Figure A.13.

99



File Dsoundptr.H

#ifndef DefsoundPTR H
#define DefsoundPTR--H

#include "Defsound.H"
#include "gencount. H"

DeclareRefptr (Defsound);
#endif
FILE: Dsoundtab.H

#ifndef Defsound TABLE H
#define Defsound-TABLE-H

finclude "Dsoundptr. H"
#*include ,gentable.Hf
#include "String.H"

DeclareHashTable(string,RefptrDefsound);
#endif

FILE: Dsoundtab.C

#include "Dsoundtab. H"

ImplementHashTable (string, Refptr Defsound);
ImplementHashTable2 (string, RefptFDefsound);

Figure A. 13 Defsound Support Files

With the support classes implemented, we can start on the Defsound class. The

Defsound class is publicly derived from Deftoken. Defsound will inherit all the methods

defined by Deftoken and Token. This includes the standard methods required for all tokens

as well as special functions unique to Deftokens, like name management methods. Most

of the methods that Defsound inherits are virtual functions. This gives the developer the

chance to redefine the default Token or Deftoken methods for the Defsound.

The first thing to do is declare the class in its own header file. In general, most of the

token classes have similar structures. This makes token creation easy because in many

cases you can find a similar class, copy its files and change the names. In fact the

Defsound/Setsound class is similar to the Defcolor/Setcolor class to they were used as

templates. The header file for Defsound is shown in Figure A.14.

100



FILE: Defsound.H
PROGRAMMER: Kalin Wilson
LANGUAGE: C++
ENVIRONMENT: SGI Iris
DESCRIPTION: This file contains the declaration of the Defsound

token for NPSGDL.
#ifndef Defsound H
#define --Defsound-H

#include 'Deftoken.Hl

// forward declarations to preclude including headers
class string;
class HashTablestringRefptrDefsound;

class Defsound : public Deftoken (
friend class Setsound; II so Setsound can directly access data

public:
DeclareType info; II insert the type system members
Defsound();-- / default constructor soundval-0;
Defsound(const Defsound&); ii Copy constructor.
Defsound(Tokeninfo); ii tokentable initializer
Defsound(istream&); // reader constructor

// construct from string and sound value
Defsound(const string&, int);
-Defsoundo; // destructor

void operator-(const Defsound&); // allow assignment of tokens
II compare names and soundval

virtual bool operator-(const Token&) const;
// order on soundval

virtual bool operator<(const Token&) const;
I // read name and soundval from strean

virtual void readfrom(istream&); I/ write a Defsound to a stream
virtual void store on(ostream&, bool savetype - TRUE) const;
virtual Token *cloje() const; II make a distinct copy

/************** special funcs ***********
// change name and update table

virtual void set name(const string&);
int get soundvaTue() const; retrieve the sound value
void seE_soundvalue(const int); // define the sound value

/I///////// static functions //////////
// create a Defsound from stream resolving duplicates

static Token *creator(istream&);

static void registertokeno;/ NOOP used to force linkin9
// check for duplicate on construction

static bool duplicateerror();
// public data member

// Table containing instances
static HashTable_stringRefptrDefsound *table;

// method to print entire table
static void dumptableon(ostream&);private:

// indicates a duplicate was constructed
static bool constructionerror;
int soundval;1;

#endif

Figure A. 14 Defsound Header File

101



Note the use of the DeclareTypeinfo macro in the public section of the class. Also

the Hashtable(string,RefptrDefsound) pointer declaration. The macro is used to insert

the required members to support the run time type system. The pointer is static and bound

to a dynamically allocated object by the constructors.

Now let's look at the implementation of the Defsound class. As a matter of style, the

first thing I do, following header inclusion, is to instantiate all static member data. Second

I add the class's type information to the type system. This is done by first declaring a static

array of const Type info pointers initialized to point at base class Type-info members.

Only immediate base classes are needed so only one will be listed unless multiple

inheritance is used. The array must be terminated by a null word. The

"ImplementType_info" macro is provided in Typeinfo. H to help initialize the type

system. It properly formats the instantiation of the static data member, Typeinfo

classdesc, included in every token class. The arguments to the macro are: class name,

class identifier1 , and pointer to array of pointers. To get a match between the string read

from a stream and the one stored in the Token::tokentable.

Following the type system initialization, I instantiate a static object that uses the

tokentable initializer constructor. Since this object is global/static it will be constructed

prior to maino. When it is constructed it will insert its information into the

Token::tokentable to allow virtual construction from streams.

Next we need to define the constructors for a Defsound. All token classes must

provide at least four different constructors for the system to work. These are: a default

constructor, a copy constructor, a tokentable initializer constructor, and a reader

constructor.

The default constructor must initialize the Defsound to a valid default state. It must

also ensure that the proper base class constructors are called. The default constructor is used

to support array of classes, a convenient syntax, and to support good programming

1. Important: The class identifier must be all lower case!. To provide case insensitivity in the token
formats, the Token::read tokenO method converts all potential identifiers to lower case.

102



practices. The Defsound default constructor is shown in Figure A.15 . Note: The "TRACER"

statements are conditionally compiled debugging statements. For more information see the NPSCL reference manual.

Defsound::Defsound() : Deftoken()

TRACER("Defsound: :Defsound () );

if (table -- 0) 1
table - new HashTable(string,RefptrDefsound)(111);I
construction error - FALSE;
soundval - 07
// The default constructor does not insert tokens into the table

Figure A. 15 Defsound Default Constructor

The copy constructor is used to initialize a new Defsound from an existing one. It is

important to provide a copy constructor because it is used to initialize temporary objects, function

arguments and other things that normally go unnoticed. Notice that the Defsound constructors call

Doftoken constructors first. You should use base class constructors to initialize base class

members. This keeps responsibility localized and consistent. It is also required if the base class

data is private. The copy constructor for Defsounds is shown in Figure A.16.

Defsound: :Defsound (const Defsound& d) : Deftoken (d), soundval (d. soundval)

TRACER(("Defsound: :Defsound(const Defsound& d) : name (d.name)");

if (table - 0) (
table = new HashTable(string,RefptrDefsound) (111);

construction error - FALSE;

II this produces a duplicate so it is not added to the table

Figure A. 16 Defsound Copy Constructor

The tokentable initializer constructor is used to add a tokens information into the

Token::tokentable. As discussed above, this table is used to implement virtual construction of

tokens from a stream. The tokentable initializer constructor does double duty in many tokens.

103



Since this constructor is usually the first called (for the class) during execution, it is used to

initialize the default token and add it to the tokens table. The Defsound tokentable

initializer constructor is shown in Figure A. 17.

Defsound: :Defsound(Tokeninfo ti) : Deftoken(ti)

TRACER('Defsound: :Defsound(Tokeninfo ti) : Token(ti) f);

// This will normally build the table
if (table - 0) (
table - new HashTable(string,RefptrDefsound)(111);

construction error - FALSE;
// define deTault token and add to table
soundval - 0;
table->add(name, this);

Figure A. 17 Defsound Tokentable Initializer

The last constructor required for all tokens is the reader constructor. The reader

constructor is responsible for initializing a token from a stream, usually a file stream. The

reader constructor begins with the assumption that the token identifier has been read. The

identifier was read by the Token: : readtoken () method and the reader constructor is

called from the tokens creator () method. The reader constructor is responsible for

parsing the stream for it's information and providing reasonable defaults and error

recovery. In the case of Deftokens, if a duplicate is constructed then the caller should be

notified via a flag. The reader constructor calls the read_from () method to do the actual

reading. This keeps the code simple and localized. Figure A. 18 shows the Defsound reader

constructor.

104



Defsound::Defsound(istream& is) : Deftoken()

TRACER("Defsound: :Defsound(istream& is) READER");
// This is the reader constructor for a Defsound

if (table - 0) (
table - new HashTable(string,RefptrDefsound) (111);I

// reset the error flag
construction-error = FALSE;

read from(is); // init from stream and return

Figure A. 18 Defsound Reader Constructor

The last constructor provided by the Defsound class allows users to define a

Defsound explicitly. This constructor is not used by the NPSGDL system. But since all

tokens should be somewhat stand-alone, constructors to build tokens directly should be

provided. This constructor uses Deftoken constructor to initialize the name and checks for

duplicates. It is shown in Figure A. 19 .

Defsound::Defsound(const string& n, int s): Deftoken(n), soundval(s)

TRACER("Defsound::Defsound(const string& n, const vertex& c)");
// add this new token to the table if It's not already there

construction error - FALSE;
if ( !table->i1cludes (name))
table->add (name, this);
else
construction-error - TRUE; // this is a duplicate

Figure A. 19 Defsound Constructor

The destructor for the Defsound class is empty. Since dynamic memory is not used

by Defsounds, there is no need to explicitly destroy member objects. It is good practice to

define a destructor in any case as a simple check that everything that needs to be

implemented has been. The Token destructor is virtual so all derived token destructors are

105



too. This ensures that if delete is called on a base pointer, the entire object referenced by the pointer

is destroyed properly.

The last method involved directly in token construction is the creator () method. The

creator ) method is a static method used to implement a kind of "virtual" constructor. The

creator () method must be static so that it can be called via a pointer without a class object. The

creator 0) method is responsible for allocating memory for a new object, calling the proper

constructor and resolving duplicates if necessary. The creator () method is normally only used by

the persistence system when reading description files. The creator ) method for Defsound is

shown in Figure A.20

Token *Defsound: :creator(istream& is)

TRACER("Token *Defsound: :creator(istream& is)");

Defsound *newtoken - new Defsound(is);

if ( ! newtoken)
Warning("Memory allocation error during creation of Defsound");
else if (construction error) (
/1 the Defsound just-built is a duplicate
string dname - newtoken->Vet name );
delete newtoken; // get rid Uf the dup
newtoken - table->lookup(dname); // get a pointer to the named Defsound

return newtoken;

Figure A.20 Defsound Creator Method

Now let's look at the reading and writing methods for the Defsound. The read_from()

method parses an input stream and extracts the tokens data. It also assumes the tokens identifier has

already been read. The normal algorithm for a read_from () method is:

1. Have any base classes read their data.

2. Read additional data this token requires.

This is illustrated in Figure A.21.

106



void Defsound::readfrom(istream& is)

string w;

// have the Deftoken read the name
Deftoken: :read from(is);

// read the sound code after the name
if(!(is >> soundval)) f
w - "Unexpected error while reading sound value for Defsound " & name;
Warning (this, w);I

construction error - FALSE;
// store the-new sound definition in the table
if(table -- 0H
w - "Defsound table has not been allocated prior to Defsound token ini\
ialization ;
Warning(this, w);

else if (table->includes (name)) I
w - 'Defsound ' & name & ", already defined! Ignoring redefinition.ff;
Warning (w);
construction-error - TRUE;I
else
// This is a new definition, just store it in the table
table->add(name, this);}

Figure A.21 Defsound Readfrom Method

The method for writing a token definition to a stream is store-on(. The store-on()

method is usually simple. It has an extra parameter that is used to tell the method to output the

token identifier or not. This is important because a derived tokens store-on () method will call

base storeon () methods but we only want the derived token to put a token identifier on the

stream. Thus, the algorithm for writing a token is:

1. Write identifier is necessary.

2. Have base classes write their data. Base class methods should be called in the
same order they appear in the class declaration as this is the order they will be
constructed.

3. Write token specific data

107



The storeon method for the Defsound class is shown in Figure A.22.

void Defsound::store on(ostream& os, bool savetype) const

TRACER(-void Defsound::store on(ostream& os, bool savetype)");

if(savetype) (
os << classdesc.nameo;I
// write the name without the Deftoken id
Deftoken::store on(os, FALSE);

// output the sound code definition
os << soundval << endl;

II

Figure A.22 Defsound Storeon Method

The above code makes up the bulk of what is needed to implement the Defsound

token class. The only other methods that should be defined are the overloaded operators,

the clone() method and the registertoken() method. The registertoken()

method is empty. It is only used by the Token-registrar object to force modules to link to

an application. The clone ) method is provided to allow users to get a distinct copy of an

object when managing tokens through pointers. Both of these methods require no change

if you imported another tokens source, beyond changing the token names.

The overloaded operators allow the user to use a simple, intuitive syntax when using

tokens.You should overload Operator- () to allow users to assign tokens to each other.

Also, if appropriate for the token, operator- () and operator< () should be defined for

comparisons. The implementations of these methods is straightforward and shown in

Figure A.23. Note that the Defsound class does not implement a define () method. Since

there is nothing that needs to be provided to the graphics or any other system, there is no

reason to override the default define method which does nothing.

108



Token *Defsound::clone() const

TRACER('Token *Defsound: :clone() const#);

return (Token *) new Defsound(*this);

void Defsound::operator-(const Defsound& d)

TRACER("void Defsound: :operator-(const Defsound& d)");

if (this - &d)
return;

Deftoken: :operator-(d);
soundval - d.soundval;

bool Defsound::operator-(const Token& t) constI
TRACER("bool Defsound: :operator--(const Token& t) const");

if(ref isA(Defsound,t)){
// got-a valid type so it's OK to cast-down

Defsound& temp - (Defsound&) t;
if (!Deftoken: :operator--(temp))
return FALSE;
if(soundval !- temp.soundval)
return FALSE;

return TRUE;

else
return FALSE;

bool Defsound::operator<(const Token& t) const

if(ref isA(Defsound,t))(
Defsound &temp - (Defsound&) t;
return soundval < temp.soundval;

else
return FALSE;

Figure A.23 Defsound Miscellaneous Methods

The implementation of the Setsound token is much the same. The same approach is

used and the same considerations need to be addressed that were discussed above. The main

difference is that we need to define a display () method that will implement the run-time

behavior of the Setsound. A simple call to the sound routine that plays a sound on the

synthesizer is all that is needed. Since the Setsound is a friend to Defsound, we can

directly access the sound code that is sent to the sound routines. Directly referencing the

109



Defsound token ensures that if the user redefines the sound code the change will be seen

by all Setsounds that use it. The implementation for the Setsound: :display () method

is shown in Figure A.24. The complete implementation for the Defsound and Setsound

token classes is contained in APPENDIX B: DEFSOUND AND SETSOUND TOKEN

LMPLMENTATIONS.

void Setsound::display() const

TRACER("void Setsound: :display() const"');

if(defptr) I
// the sound system is not fully implemented yet
// soundplay(defptr->soundval);

Figure A.24 Setsound Display Method

Adding tokens to the libraries

Once the source files for the new tokens are finished, they need to added to the make

files so they can be compiled and added to the NPSGDL libraries. There are three

subdirectories used to manage the NPSGDL libraries. Each has it's own make file.The

"debug" directory makefile compiles using the -g switch for debugging information and

builds the library archive "libDNPSGDL.a". The "optimized" directory makefile compiles

using the -O switch for optimized code and defines the macro "NDEBUG" which disables

assertion checking. It manges the "libNPSGDL.a" archive. This is the library normally

used by designers. The last subdirectory, "trace", has a makefile that compiles using the -g

debugging switch and defines the macro "DEBUG" which enables function call tracing via

the NPSCL debugging classes in "debug.H". This library is useful to NPSGDL

maintenance developers who need to monitor NPSGDL activities. As mentioned before,

special steps must be taken to initialize the tracing system to prevent errors.

The source code for the NPSGDL system is contained in the NPSGDL directory.

Different versions of object files as well as the libraries are kept in the library

Ito



subdirectories. In order for make to manage the file dependencies properly, file links to the

source fides are also placed in each library directory.

There are some basic steps that need to be followed to ensure a new token is compiled

correctly, added to all the libraries and will be linked to an application when needed. These

are shown below. In addition to those mentioned below, there are other make directives

available in the main NPSGDL makefile. They allow updates to individual libraries and

removal of the file links. See the makefile for details.

1. In the Token-registrar constructor, add a call to the new tokens
registerjtoken0 method. This is to force linking of the token to make sure it's
information is added to the tokentable.

1. Open the file Tokreg.H.

2. Add the new token's header file to Tokreg.H.

3. Add a call to the new token's registertoken( method to the

Tokenregistrar constructor.

2. Add the new token's source and object file names to the "SRC" and "OBJ"
macros in each makefile of each library directory.

3. From the NPSGDL directory, run "make depend" to update the library file
dependency information.

4. From the NPSGDL directory, run "make updatelinks" to update the source file
links in each library directory.

5. From the NPSGDL directory, run "make" to rebuild all of the libraries.

Each library has hard links in the NPSGDL/lib directory for application programers.

This method of managing the different versions of the NPSGDL system keeps

multiple copies of the object files. This can be useful if the alternate linking scheme

discussed above is used. Otherwise they take up space that may be reclaimed after the

libraries have been built.

III



APPENDIX B: DEFSOUND AND SETSOUND TOKEN IMPLMENTATIONS

/********************************************

FILE: Defsound.H
PROGRAMMER: Kalin Wilson
LANGUAGE: C++
ENVIRONMENT: SGI Iris
DESCRIPTION: This file contains the declaration of the Defsound token for
NPSGDL.

#ifndef Defsound H
#define _DefsoundH

#include "Deftoken.H"

// forward declarations to preclude including headers
class string;
class HashTable_stringRefptrDefsound;

class Defsound : public Deftoken (
friend class Setsound; // so Setsound can directly access data

public:
DeclareTypeinfo; // insert the type system members
Defsound(); // default constructor soundval-0;
Defsound(const Defsound&); // Copy constructor.
Defsound(Tokeninfo); // tokentable initializer
Defsound(istream&); /1 reader constructor
Defsound(const string&, int); // construct from string and sound value
-Defsoundo; // destructor

void operator-(const Defsound&); // allow assignment of tokens
virtual bool operator-(const Token&) const; II compare names and

soundval
virtual bool operator<(const Token&) const; I/ order on soundval
virtual void read from(istream&); // read name and soundval from stream
// write a Defsound to a stream
virtual void store on(ostream&, bool savetype - TRUE) const;
virtual Token *clone() const; // make a distinct copy

/************** special funcs *
virtual void setname(const string&); 1/ change name and update table
int get_soundvalue() const; // retrieve the sound value
void setsoundvalue(const int); // define the sound value

IIIIIIIIIII static functions IIIIIII
static Token *creator(istream&); I/ create a Defsound from stream
// resolving duplicates
static void register tokeno; Ii NOOP used to force linking
static bool duplicate erroro; II check for duplicate on construction

112



// public data member
static HashTable_stringRefptr Defsound *table; // Table containing

instances
static void dump_tableon(ostream&); // method to print entire table

private:
static bool construction error; // indicates a duplicate was constructed
int soundval; // the code used to access sounds

inline int Defsound::get_soundvalue() const { return soundval;)
inline void Defsound::set soundvalue(const int a) f soundval - s;)
#endif

/********************************************
FILE: Defsound.C
PROGRAMMER: Kalin Wilson
LANGUAGE: C++
ENVIRONMENT: SGI
DESCRIPTION: This file cont-ains the implementation of the Defsound token

#include 'Defsound.H'
#include "Dsoundtab.H"
#include "Dsoundptr.H"
#include "debug.H"

#/ *include "sound.h"
/# #include "network.h"

II instantiate the static data members
HashTable stringRefptrDefsound *Defsound::table - 0;
bool Defsound::construction error - FALSE;

I/ initialize the type info system
static const Typeinfo *Defsoundb[J - f&Deftoken::class_desc, NULL);
ImplementTypeinfo(Defsound,ffdefsound",Defsoundb);

/1 Defsound instance to init tokentable and define default
static Defsound Defsound init(Tokeninfo(Defsound::class desc.nameo,
&Defsound::creator));

/**************************************************************
Defsound::Defsound() : Deftoken()

TRACER("Defsound: :Defsound o");

if(table - 0)

113



table - new HashTable(string,RefptrDefsound)(111);

construction-error - FALSE;
soundval - 0;
II The default constructor does not insert tokens into the table

Defsound::Defsound(const Defsound& d) : Deftoken(d), soundval(d.soundval)

TRACER("Defsound: :Defsound(const Defsound& d) : name (d.name)");

if (table - 0)
table - new HashTable(string,RefptrDefsound)(111);
)

construction error - FALSE;

// this produces a duplicate so it is not added to the table

Defsound::Defsound(istream& is) : Deftoken()

TRACER ("Defsound: :Defsound (istream& is) READER");
// This is the reader constructor for a Defsound

if (table - 0) j
table - new HashTable(string,RefptrDefsound) (111);

II reset the error flag
construction-error - FALSE;

read from(is); // init from stream and return

Defsound: :Defsound(Tokeninfo ti) : Deftoken(ti)

TRACER("Defsound::Defsound(Tokeninfo ti) : Token(ti)ff);

// This will normally build the table
if (table - 0) (
table - new HashTable(string,RefptrDefsound)(111);

construction error - FALSE;
// define default token and add to table
soundval - 0;
table->add (name, this);

114



Defsound::Defsound(const string& n, nt, s): Deftoken(n), soundval(s)

TRACER("Defsourid::Defsound(const string& n, const vertex& c)");
// add this new token to the table if itts not already there

construction error - FALSE;
if ( !table->includes (name))
table->add (name, this);
else
con~struction-error =TRUE; // this is a duplicate

Defsound::-Defsoundo(

TRACER ("Defsound: :-Defsound(") ;
1/nothing to explicitly destroy

Toe Dfon:cetritem s

TAE(Token *Def sound: :creator(istream& is) f)

Defsound *newtoken - new Defsound(is);

if O newtoken)
Warning('"Memory allocation error during creation of Defsoundff);
else if (construction error)(
// the Defsound just built is a duplicate
string dname - newtoken->get naxneo;
delete newtoken; // get rid of the dup
newtoken - table->lookup(dname); // get a pointer to the named Defsound

return newtoken;

void Defsound::operator-(conat Defsound& d)

TRACER ('void Defsound::operator- (const Defsound& d) if);

if (this - &d)
return;

Deftoken: :operator-(d);
soundval - d.soundval;

bool Defsound::operator-(const Token& t) conat

115



TRACER('"bool Defsound::operator- (const Token& t) constO);

if(ref_isA(Defsound, t))
// got a valid type so it's OK to cast-down

Defsound& temp - (Defsound&) t;
if(!Deftoken: :operator-(temp))
return FALSE;
if(soundval !- temp.soundval)
return FALSE;

return TRUE;
I

else
return FALSE;
I

bool Defsound::operator<(const Token& t) const

if(refisA(Defsound,t))(
Defsound &temp - (Defsound&) t;
return soundval < temp.soundval;

else
return FALSE;
I

void Defsound::readfrom(istream& is)

string w;

// have the Deftoken read the name
Deftoken::read from(is);

// read the sound code after the name
if('(is >> soundval)) (
w - "Unexpected error while reading sound value for Defsound ' & name;
Warning(this,w);
I

construction error - FALSE;
1/ store the new sound definition in the table
if (table - 0)1
w - 'Defsound table has not been allocated prior to Defsound token

initialization";
Warning(this, w);
I
else if(table->includes(name))
w - "Defsound I & name & " already defined! Ignoring redefinition.";

Warning(w);

116



construction-error - TRUIE;

else
// This is a new definition, just store it in the table
table->add(name, this);

void Defsound::store-on(ostream& as, bool savetype) const

TRACER("void Defsound::store on(ostream& as, bool savetype) const");

if(savetype) (
as << class-desc.nameO(;

1/write the name without the Deftoken id
Deftoken::store on(os, FALSE);

IIoutput the sound code definition
as << soundval << endl;

Token *Defsound::clone() const

TRACER('"Token *Defsound: :cloneo( const");

return (Token *) new Defsound(*this);

void Defsound::register-token()

TRACER("void Defsound: :register-token()"I

void Defsound: :dump__table-on(ostream& as)

TRACER ("void Defsound::dump_ýtable on (ostream& as) "1;
if(!table)
return;

table->goto -first 0;
while (table->current valido)
(table->current -data() I->store on(os);
table->goto next 0;

117



void Defsound::set name(const string& n)

II This function overrides the Deftoken function because
ii we need to update the Defsound Table

table->remove (name);
name - n;
table->add(name,this);
1

bool Defsound::duplicateerror() o return constructionerror;J

/***************** end of Defsound.C *

/1 -*- C++
/********************************************
FILE: Setsound.H
PROGRAMMER: Kalin Wilson
LANGUAGE: C++
ENVIRONMENT: SGI
DESCRIPTION: This file contains the declaration of the Setsound token

#ifndef SETSOUND H
#define SETSOUNDH

#include "Settoken. H'
#include "Dsoundptr. H"

class Setsound : public Settoken
public:
Setsoundo;
Setsound(const Setsound&);
Setsound(Tokeninfo);
Setsound(istream&);
virtual -Setsoundo;

void operator-(const Setsound&);
virtual bool operator-(const Token&) const;
virtual void read from(istream&);
virtual void storeon(ostream&, bool savetype - TRUE) const; / Writer
virtual Token *clone() const;
virtual void display() const;
virtual void set name(const string&); // override to get new assosiation
DeclareType_info;
static Token *creator(istream&);
static void register tokeno;



private:
Refptr (Defsound) defptr;

#endif

FILE: Setsound.C
PROGRAbM~R: Kahin Wilson
LANGUAGE: C++
ENVIRONMENT: SGI
DESCRIPTION: This file contains the implementation of the Setsound token

#include 'Set sound. Hf
#include 'Defsound.H"
#include "Dsoundptr. H"
#include "Dsoundtab .H"
#include 'debug. Hf

// mnit the type system
static const Type-info *Setsound-b[] - f&Settoken::class-desc, NULL);
ImplementType-info (Setsound, "Setsound", Seteound-b);

i it the tokentable
static Setsound Setsound-imit (Tokeninfo0(Setsound::class-desc .name ),
&Setsound: :creator));

Setsound::Setsound() Settoken()

TRACER("Setsound: :Setsoundo0");
string w;

// get the default sound
if(Defsound: :table)
defptr - Defsound: :table->lookup (name);
if(!defptr)
w - 'Defeourid "&name & I not found in Defsound::table. Using
'default'."f;
Warning(this, w);
defptr - Defsound: :table->lookup ("'default"f);
if(!defptr)

Warning("Defsound 'default' not defined in Defsound:table.0);

else

119



W - '"DefsOund::table hag rnot been initialized"f;
Warning(this, w);

Setsound: :Setsound(const Setsound& d) : Settoken(d), defptr (d.defptr)

TRACER("Setsound: :Setsound(const Setsound& d) :name (d.name)"');

Setsouid: :Setsourld(istream& is): Settoken()

TRACER ("Setsound: :Setacund (istream& is) RE2ýDERw);
read-from~is);

Seteound: :Setsound (Tokeninfo ti) : Settoken (ti)

TRACER("Setsound: :.,etsound(Tokeninfo ti) :Token(ti)w);

Setsound::-Setsoundo(

TRACER ("Setsound: :-Setsound()");

Token *Setsound::creator (istream& is)

TRACER("Token *Setsound: :creator(istream& is)');

Setsound *newtoken - new Setsound(is);
if ( newtoken)
Warning("Memory allocation error during creation of Setsoundw);

return newtoken;

vidSton:oeao-cntSton&)

TAE(void Setsound::operatorin (const Setsound& d) ')

120



if (this - 6d)

return;
Settoken: :operator-(d);
defptr - d.defptr;

bool Setsound::operator-(const Token& t) conat

TRACER ("bool Setsound: :operator-- (const Token& t) const");
return Settoken::operator- (t);

void Setsound::read-from(istream& is)

string w;

Settoken::read from(is); //just read the name

if (Defsound: :table)I
defptr - Defsound: :table->lookup (name);
if(!defptr)
w - '"Defsourid " & name & " not found in Defsound::table. Using
'default'I.0
Warning(this, w);
defptr - Defsound: :table->lookup ("Idefault"f);
if(!defptr)

Warning('Defsound 'default' not defined in Defsound:table.ff);

else
w - 'Defsound::table has not been initialized";
Warning(this, w);

void Setsound::store-on(os~.ream& os, bool savetype) const

TRACER('void Setsound::store_on(ostream& os, bool savetype) const'F);

if (savetype)
os << class-desc.nameo;

IIoutput a Setsound definition
Settoken::store-on(os, FALSE);
os << endl;

121



Token *Setsound::clone() const

TRACER ('Token *Setaound::cloneo( const'f);

return (Token *) nev Setsound(*this);

vidSton:dsly ot

TAE(void Setsound::display() const ')

if(defptr)
IIthe sound system is not fully implemented yet
IIsoundplay(defptr->soundval);

void Setsourid::register-token()

TRACER('void Setsound: :register-token()")

void Setsound::set-name(const string& n)

string w;
Settoken: :set-name (n);

if(Defsound: :table)I
defptr - Defsound: :table->lookup (name);
if(!defptr)f
w - "Defsound "&name & " not found in Defsound::table. Using
'default'.";
Warning(this, w);
defptr - Defsound: :table->lookup("default');
if(!defptr)I

Warning("Defsound 'default' not defined in Defsound:table.ff);

else(
w - "Defsound::table has not been initialized';
Warning(this, w);

122



APPENDIX C: SAMPLE NPSGDL APPLICATION

This appendix illustrates the use of NPSGDL by showing the source code of a simple

GDL application using animation. The following pages contain the program source code

and the description files for the GDL objects used by the program. The material and floor

object description files are omitted because they are very large.

This application opens a window and displays a simple robot with articulated joints.

The robot is built from spheres, cylinders and cones for simplicity. Each of the joints at the

shoulders, wrists, hips and knees are controlled by animated variables. The values of the

variables is controlled by dials on a button-dial box. This shows some of the interactive

capabilities of the GDL system.

The viewing volume for the robot scene is described by GDL cameia and viewpoint

tokens. The viewpoint uses animated variables to move the viewers location around the

robot on a circle. This animated movement is continous and is completely controlled by

GDL.

This example is provided to show the ease and power of the GDL system. This

program could be extended easily to provide more complex behavior. The source code also

serves to illustrate the normal sequence of events required for a typical GDL application.

123



// Sample GDL application robot.C

#include *NPSobject.H' // C++ OFF
#include 'gl.h' // SGI gl library
#include "device.hN
#include 'Defvariable.H" // To get access to the ruletable
#include "Ruletable.H" // to use the ruletable methods
#include <math.h>

void initializeo;

II these are global variables updated using the dials.
II they control the robot joint rotations
// These variables could be static to a class or something

float leftshoulder, rightshoulder, leftwrist, rightwrist, lefthip,
righthip,
leftknee, rightknee;
// these variables are used to describe the circle
I/ the animated viewpoint follows
float viewangle, viewrad;

II These are rule functions used by GDL to update Defvariables
II These are the hooks from GDL to an application to control animation
I/ In this case we are returning the current value of interactively
// modified variables

float leftshoulderfunc(float f)

return leftshoulder;

float rightshoulderfunc(float f)

return rightshoulder;
I

float leftwristfunc(float f)
{

return leftwrist;

float rightwristfunc(float f)

return rightwrist;
I

float lefthipfunc(float f)

return lefthip;

124



float righthipfunc(float f)

return righthip;

float leftkneefunc(float f)

return leftknee;

float rightkneefunc(float f)

return rightknee;

1/these two rules describe the viewfrom circle

float viewxfunc(float f)

return viewrad * fcoa(viewangle * .017);

float viewzfunclfloat f)

return viewrad * fsin(viewangle * .017);

maino(

short value; /* value returned from the event queue ~

1/initialize the ruletable so Defvariables can use rules
Defvariable::ruletable->add (uleftshoulderfuncff, leftshoulderfunc);
Defvariable::ruletable->add (urightshoulderfuncf, rightshoulderfunc);
Defvariable::ruletable->add ('leftwristfunc", leftwristfunc);
Defvariable::ruletable->add ("rightwristfunc", rightwristfunc);
Defvariable: :ruletable->add("lefthipfunc", lefthipfunc);
Defvariable::ruletable->add ('righthipfuncm, righthipfunc);
Defvariable::ruletable->add ("leftkneefunc", leftkneefunc);
Defvariable::ruletable->add ("rightkneefunc", rightkneefunc);
Defvariable: :ruletable->add("viewxfuncl, viewxfunc);
Defvariable: :ruletable->add('viewzfunc', viewzfunc);

/* initialize the IRIS system open the window etc.*/
initialize 0;

125



// contains the background color for easy modification
NPSobject backgroundobj("backcolor.gdl");

// the lighting model and light definitions
NPSobject lightobj('light.gdl");

// a huge file containing many Defmaterial tokens
NPSobject materialsobj("allmaterials.gdl");

NPSobject cameraobj("camera.gdl"); // camera and viewpoint definitions

NPSobject floorobj("floor.gdl"); // a checkerboard floor for reference

NPSobject robotobj('robot.gdl"); // the robot description

/* ready the objects for display */

cameraobj.define );

/* define the lights and light model */
lightobj.define();
backgroundobj.define );

/* define the materials */
materialsobj.define 0;

/* define any lights or materials or other defs
in the robot*/

robotobj.defineo(;

/* define any lights or materials or other defs
in the floor obj
*/

floorobj.define(0;

while(TRUE)

/* do we have something on the event queue 7 process it*/
if (qtest 0)

switch (qread (&value))

case DIALO:
rightknee - value;
break;

case DIALl:

126



leftknee - value;

break;
case DIAL2:

righthip - value;

break;
case DIAL3:

lefthip - value;
break;

case DIAL4:
rightwrist - value;
break;

case DIAL5:
leftwrist = value;
break;

case DIAL6:
rightshoulder - value;
break;

case DIAL7:.
leftshoulder - value;
break;

case REDRAW:
reshapeviewport();
break;

default:
break;

/* end switch on event queue item */
/* endif qtest() */

/* draw the background color */
backgroundobj.display );
clear();

/* turn on Z-buffering *1
zbuffer(TRUE);

/* clear the z-buffer *1
zclearo;

/* put up the projection and viewing matrix */
cameraobj.display(;

/* put up the light */
lightobj.displayo;

/* draw the floor
floorobj.display(; */

/* draw the inputobj */
robotobj.display 0;

/* turn z-buffering off */

127



zbuffer (FALSE);

1* change the buffers ...

svapbuffersO);

void initialize()

/* set up the preferred aspect ratio ~
keepaspect (XMAXSCREEN+l,YMAXSCREEN+l);

1* open a window for the program *
winopen ("Robot"f);

/* make a title */
wintitle ("Robotff);

/* put the IRIS into double buffer mode *
doublebuffero;

1* put the iris into rgb mode-*/
RGBmode 0;

/* configure the IRIS (means use the above command settings) *
gconfigo;

/* set the depth for z-buffering ~
lsetdepth (OxOOOOOO, Ox7fffff);

/* queue the redraw device *
qdevice (REDRAW);

// queue the dials and set the value limits
qdevice (DIALO);
qdevice (DIALl);
qdevice (DIAL2);
qdevice (DIAL3);
qdevice (DIAL4);
qdevice (DIAL5);
qdevice (DIAL6);
qdevice (DIAL7);

setvaluator (DIALO, 0, 0, 90);
setvaluator(DIALl,,O, 0, 90);
3etvaluator(DIAL2,O, -90, 0);
setvaluator (DIAL3, 0, -90, 0);
setvaluator(DIAL4,0, -45, 45);
setvaluator(DIAL5,O, -45, 45);
3etvaluator(DIAL6,0, -90, 45);

128



setvaluator(DIAL7,0, -90, 45);

/* turn the cursor on */
cursono;

/* select gouraud shading */
shademodel (GOURAUD);

/* turn on the new projection matrix mode */
nimode (MVIEWING);

/*********** This is the Robot.gdl description file ************/
/*******************************************************************f

/1 robot.gdl
/* This file demonstrates the possiblities of the GDL language

and it's animation support

name robot
// define some variables to be-used by animated rotations

defvariable leftshoulderrot
min -180
max 60
init 0
inc 0.5
rulename leftshoulderfunc

defend

defvariable rightshoulderrot
min -180
max 60
init 0
inc 0.5
rulename right shoulderfunc

defend

defvariable leftwristrot
min -55
max 55
init 0
inc 1
rulename leftwristfunc

defend

defvariable rightwristrot
mrin -55
max 55

129



mnit 0
inc 1
rulename rigkitwristfunc

defend

defvariable lefthiprot,
min -100
max 35
init 0
inc 0.5
rulename lefthipfunc

defend

defvariable righthiprot
min -100
max 35
init 0
inc 0.5
rulename righthipfunc

defend

defvariable leftkneerot
m~in 0
max 90
init 0
inc 1
rulename leftkneefunc

defend

defvariable rightkneerot
min 0.
max 90
init 0
inc 1
rulename rightkneefunc

defend

defvariable neckrot
min -90
max 90
init 0
inc 1
timed yes

defend

1/Describe the robot using hierarchical rotations

pushmatrix
// draw the body
setmaterial gold

130



defcylinder high
base 0 9 0
radius 4
height 11
panels 10

endcylinder

// draw the neck and head

setmaterial gray

// the neck (doesn't rotate)
defcylinder high

base 0 20 0
radius 0.5
height 2

endcylinder

pushmatrix
// the head and nose rotating

translate 0 24 0
a rotate y neckrot

setmaterial silver
defsphere high

center 0 0 0
radius 3
panels 100

endsphere

pushmatrix
rotate x 90
setmaterial pewter
defcone high

base 0 0 0
radius 1
height 4.5

endcone
popmatrix

popmatrix

// draw the left arm
pushmatrix

setmaterial blueplastic
translate 5 20 0
a-rotate x leftshoulderrot
defcylinder high

base 0 0 0
height -5
radius 1

131



endcylinder

// draw the left hand
pushmatrix

setmaterial shinybrass
translate 0 -5 0
a-rotate x leftwristrot
defcone high

height -4
radius 1

endcone
popmatrix

popmatrix

// draw the right arm
pushmatrix

setmaterial blueplastic
translate -5 20 0
a rotate x rightshoulderrot
defcylinder high

base 0 0 0
height -5
radius 1

endcylinder

// draw the right hand
pushmatrix

setmaterial shinybrass
translate 0 -5 0
a rotate x rightwristrot
defcone high

height -4
radius 1

endcone
popmatrix

popmatrix

ii draw the left leg
pushmatrix

setmaterial gold
translate 2.5 9 0
a_rotate x lefthiprot
defcylinder high

base 0 0 0
height -5
radius 1.5

endcylinder

// draw the left foot
pushmatrix

setmaterial gray

132



translate 0 -5 0
a-rotate x leftkneerot
defcone high

height -4
radius 1.5

endcone
popmatrix

popmatrix

// draw the right leg
pushmatrix

setmaterial gold
translate -2.5 9 0
a_rotate x righthiprot
defcylinder high

base 0 0 0
height -5
radius 1.5

endcylinder

// draw the right foot
pushmatrix

setmaterial gray
translate 0 -5 0
a rotate x rightkneerot
defcone high

height -4
radius 1.5

endcone
popmatrix

popmatrix

popmatrix

/****************** This is the robot camera definition file *********//***********************************************************************
// camera.gdl
/* This GDL files describes a camera and viewpoint used in robot.C

The viewpoint is animated to follow a circle in the from location
*!

// these variables describe the circle of radius 50
defvariable viewx

min -50
max 50
init 0
inc 0.3
wrap no
rulename viewx

defend

133



defvariable viewz
min -50
max 50
init 50
inc 0.1
wrap no
rulename viewz

defend

defpcamera robotcam
nearplane 10
farplane 1024
aspect 1.25
fov 400
defend

defviewpoint robotview
from viewx 17 viewz
to 0 15 0
twist 0
defend

// these tokens are the display portion of this object

II define the viewing volume
loadunit
setpcamera robotcam on
setviewpoint robotview on

/************ This is the robot background color object file *********/
/***********************************************************************
1/ backcolor.gdl
II This file defines and uses a color for the robot background
II A GDL file is used to allow easy change of the color

defcolor gray
0.5 0.5 0.5

setcolor gray

/************** This is the lighting description file for the robot ***/
/************************************************************************
I/ light.gdl
/* This GDL file contains the lighting model and light definitions used

in robot.C
*/

/* define the light for the object
Lights can have more components than this*/

134



deflight whitelight
ambient 0.0 0.0 0.0
icolor 1.0 1.0 1.0
position 0.0 0.7607 0.7607 0.0

defend

/* define the lighting model */

deflmodel mylightmodel_normal
ambijent 0.2 0.2 0.2
localviewer no
attenuation 1.0 0.0 0.0
twoside no

defend

// This is the displayable portion of the light object

/* turn on the lighting model */
setlmodel mylightmodelnormal on

/* turn on the lights */
setlight whitelight 0 on

135



LIST OF REFERENCES

[Ref. 41 Zyda, Michael J.,Pratt. David R., Monahan, James G. and Wilson, Kalin P., "NPSNET:
Constructing a 3D Virtual World", Proceedings of the 1992 Symposium on 3D Interactive
Graphics, March 1992.

[Ref. 5] Wilson, Kalin P., Zyda Michael J., Pratt, David R., and Monahan, James G. "NPSOFF: An
Object Description Language for Supporting Virtual World Construction", in submission.

[Ref. 6] Wtsskirchen, Peter ,Object-Oriented Graphics, Springer-Verlag, 1990.

[Ref. 7] Wisskirchen, Peter, Obect and Constraint Paradigms for Graphics, "Object-Oriented and
Classical Approaches", ACM SIGGRAPH 1991 course 22 notes, 1991.

[Ref. 8) Egbert, Parris K. and Kubitz, William J. "Application Graphics Support through Object-
Orientation, November 14, 1991, draft paper.

[Ref. 91 Zelenik, Raobert C., Conner, D. Brookshire, Wloke, Mathias M., Aliaga, Daniel G., Huang,
Nathan T., Hubbard, Philip M., Knep, Brian, Kaufman, Henry, Hughes, John E, van Dam,
Andries, "An Object-Oriented Framework for the Integration of Interactive Animation
Techniques", ACM Computer Graphics, volume 25 number 4, Siggraph '91 Proceedings, pp.
105-111, 1991.

[Ref. 10] Struass, Paul S., Carey, Rikk, "An Object Oriented 3D Graphics Toolkit", ACM Computer
Graphics, volume 26 nwnber 2, Siggraph '92 Proceedings, 1992.

[Ref. 11] Magnenat-Thalman, Nadia, Thalman, Daniel, Computer Animation, Theory and Practice,
second edition, pp161-162, Springer-Verlag, 1990.

[Ref. 12] SiliconGraphics Computer Systems, Inc., Graphics Library Reference Manual, C edition,
Iris-4D series, 1990.

[Ref. 13] Gorlen, Keith E., Orlow, Sanford M., Plexico, Perry S., Data Abstraction and Object-
Oriented Programmint in C++, John Wiley & Son, 1990.

[Ref. 14] The Texas Instruments C++ Object-Oriented Library Users Manual, Texas Instruments
Inc., 1990.

[Ref. 15] Ellis, Margaret A. and Stroustrup, Bjame, The Annotated C++ Reference Manual, Addison-
Wesley, 1990.

[Ref. 16] Stroushup, Bjarne and Lenkov, Dmitry, "Runtime Type Identification for C++, A Proposal
for New Features to the Language.", The C++ Report, vol. 4 num. 3, pp. 32-42, March-April
1992. S

[Ref. 17] Stroustrup, Bjarne, The C++ Programming Language, Second Edition, Addison-Wesley,

1991.

[Ref. 18] Shapiro, Jonathan. A C++ Toolkit, Prentice Hall, 1991.

[Ref. 191 Coplien, James 0., Advanced C++, Programming Styles and Idioms, Addison-Wesley,
1992.

136



[Re. 20] Silicon Graphics Computer Systems inc., Graphics Library Programming Tools and

Techniques, pp 2-1 - 2-53, 1991.

[Ref. 21] Silicon Graphics, Inc., IRIS Universe issue 11, pp33-34.

#1.

137



INITIAL DISTRIBUTION LIST

I. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 0142

Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 8

Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5100

4. Lieutenant Kalin P. Wilson
438 E. 800 S.
Salt Lake City, UT 84117

5. David Pratt
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5100

6. Lieutenant Comander Don Brutzman I
Code OR/Br
Naval Postgraduate School
Monterey, CA 93943-5100

138


